Intestinal active absorption of sugar-conjugated compounds by glucose transport system: implication of improvement of poorly absorbable drugs

Biochem Pharmacol. 1992 May 8;43(9):2037-9. doi: 10.1016/0006-2952(92)90649-4.

Abstract

The intestinal absorption of glucose- and galactose-conjugated compounds was studied in the everted sac of the rat small intestine. The absorption clearance of p-nitrophenyl beta-D-glucopyranoside (p-NPglc) at 250 microM in the mucosal side (4.45 +/- 0.34 microL/min/cm, mean +/- SE, N = 4), calculated by dividing the absorption rate by the drug concentration, was significantly decreased (0.476 +/- 0.036 microL/min/cm) in the presence of 1 mM phloridzin, an inhibitor of glucose transport, and in the absence of Na+, a cosubstrate of the glucose transport carrier (0.424 +/- 0.018 microL/min/cm). The absorption clearance of p-NPglc was decreased as its concentration increased. In the same experiment, the absorption clearance of p-nitrophenyl beta-D-galactopyranoside (1.99 +/- 0.23 microL/min/cm) was also significantly decreased in the presence of phloridzin and in the absence of Na+. However, the absorption clearance of p-nitrophenyl beta-D-mannopyranoside (0.811 +/- 0.013 microL/min/cm) was low and not significantly decreased in the presence of phloridzin (P greater than 0.1). Furthermore, the absorption clearance of beta-naphthyl beta-D-glucopyranoside and beta-naphthyl beta-D-galactopyranoside was also significantly decreased in the presence of phloridzin (P less than 0.001). These results indicated that the glucose and galactose moieties provided these compounds with a new route by way of the glucose transport carrier for intestinal absorption.

MeSH terms

  • Animals
  • Biological Transport
  • Drug Carriers
  • Galactose / metabolism*
  • Glucose / metabolism*
  • Glucosides / metabolism
  • Intestinal Absorption*
  • Monosaccharide Transport Proteins / antagonists & inhibitors
  • Monosaccharide Transport Proteins / metabolism
  • Naphthols / metabolism
  • Phlorhizin / pharmacology
  • Rats

Substances

  • Drug Carriers
  • Glucosides
  • Monosaccharide Transport Proteins
  • Naphthols
  • 4-nitrophenyl beta-D-glucoside
  • Phlorhizin
  • Glucose
  • 2-naphthol
  • Galactose