Lactobacillus coryniformis CECT 5711, a strain isolated from a goat's milk cheese, displayed a broad-spectrum antimicrobial activity; as a consequence, its ability to produce the antagonistic compounds associated to lactic acid bacteria, including bacteriocins, hydrogen peroxide, lactic acid, acetic acid, and reuterin (3-hydroxypropionaldehyde, 3-HPA) was investigated. Production of bacteriocins or hydrogen peroxide by this strain could not be detected. However, in addition to lactic acid and acetic acid, it produced reuterin and cobalamin, a cofactor required for conversion of glycerol to 3-HPA through a glycerol dehydratase. The gene encoding a glycerol dehydratase subunit was detected by PCR and the corresponding amplicon was sequenced. This strain showed a high survival after exposition to conditions simulating those existing in the gastrointestinal tract as well as a notable ability to adhere to intestinal cells, which suggests that its reuterin-producing ability may be used for the host benefit. In addition, the strain showed a strong beta-galactosidase activity. Production of biogenic amines and degradation of mucin could not be detected.