Objective: To analyze the putative interest of oligofructose (OFS) in the modulation of food intake after high-fat diet in rats and to question the relevance of the expression and secretion of intestinal peptides in that context.
Research methods and procedures: Male Wistar rats were pretreated with standard diet or OFS-enriched (10%) standard diet for 35 days followed by 15 days of high-fat diet enriched or not with OFS (10%) treatment. Body weight, food intake, triglycerides, and plasma ghrelin levels were monitored during the treatment. On day 50, rats were food-deprived 8 hours and anesthetized for blood and intestinal tissue sampling for further proglucagon mRNA, glucagon-like peptide (GLP)-1, and GLP-2 quantification.
Results: The addition of OFS in the diet protects against the promotion of energy intake, body weight gain, fat mass development, and serum triglyceride accumulation induced by a high-fat diet. OFS fermentation leads to an increase in proglucagon mRNA in the cecum and the colon and in GLP-1 and GLP-2 contents in the proximal colon, with consequences on the portal concentration of GLP-1 (increase). A lower ghrelin level is observed only when OFS is added to the standard diet of rats.
Discussion: In rats exposed to high-fat diet, OFS is, thus, able to modulate endogenous production of gut peptides involved in appetite and body weight regulation. Because several approaches are currently used to treat type 2 diabetes and obesity with limited effectiveness, dietary fibers such as OFS, which promote the endogenous production of gut peptides like GLP-1, could be proposed as interesting nutrients to consider in the management of fat intake and associated metabolic disorders.