Composition, toxicity, and mutagenicity of particulate and semivolatile emissions from heavy-duty compressed natural gas-powered vehicles

Toxicol Sci. 2005 Sep;87(1):232-41. doi: 10.1093/toxsci/kfi230. Epub 2005 Jun 23.

Abstract

Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants / toxicity*
  • Animals
  • Fossil Fuels / adverse effects*
  • Gasoline / adverse effects
  • Lung / drug effects
  • Male
  • Mutagens / toxicity*
  • Rats
  • Rats, Inbred F344
  • Salmonella / drug effects
  • Salmonella / genetics
  • Vehicle Emissions / adverse effects*
  • Vehicle Emissions / analysis
  • Volatilization

Substances

  • Air Pollutants
  • Fossil Fuels
  • Gasoline
  • Mutagens
  • Vehicle Emissions