Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets

Proteins. 2005 Aug 1;60(2):245-51. doi: 10.1002/prot.20565.

Abstract

The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Computational Biology / methods*
  • Computer Simulation
  • Databases, Protein
  • Dimerization
  • Internet
  • Ligands
  • Macromolecular Substances
  • Models, Molecular
  • Models, Statistical
  • Molecular Conformation
  • Mutation
  • Protein Conformation
  • Protein Folding
  • Protein Interaction Mapping / methods*
  • Protein Structure, Tertiary
  • Proteomics / methods*
  • Reproducibility of Results
  • Software
  • Static Electricity
  • Structural Homology, Protein

Substances

  • Ligands
  • Macromolecular Substances