Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 31 (2), 101-35

Protein Signatures Distinctive of Alpha Proteobacteria and Its Subgroups and a Model for Alpha-Proteobacterial Evolution


Protein Signatures Distinctive of Alpha Proteobacteria and Its Subgroups and a Model for Alpha-Proteobacterial Evolution

Radhey S Gupta. Crit Rev Microbiol.


Alpha (alpha) proteobacteria comprise a large and metabolically diverse group. No biochemical or molecular feature is presently known that can distinguish these bacteria from other groups. The evolutionary relationships among this group, which includes numerous pathogens and agriculturally important microbes, are also not understood. Shared conserved inserts and deletions (i.e., indels or signatures) in molecular sequences provide a powerful means for identification of different groups in clear terms, and for evolutionary studies (see This review describes, for the first time, a large number of conserved indels in broadly distributed proteins that are distinctive and unifying characteristics of either all alpha-proteobacteria, or many of its constituent subgroups (i.e., orders, families, etc.). These signatures were identified by systematic analyses of proteins found in the Rickettsia prowazekii (RP) genome. Conserved indels that are unique to alpha-proteobacteria are present in the following proteins: Cytochrome c oxidase assembly protein Ctag, PurC, DnaB, ATP synthase alpha-subunit, exonuclease VII, prolipoprotein phosphatidylglycerol transferase, RP-400, FtsK, puruvate phosphate dikinase, cytochrome b, MutY, and homoserine dehydrogenase. The signatures in succinyl-CoA synthetase, cytochrome oxidase I, alanyl-tRNA synthetase, and MutS proteins are found in all alpha-proteobacteria, except the Rickettsiales, indicating that this group has diverged prior to the introduction of these signatures. A number of proteins contain conserved indels that are specific for Rickettsiales (XerD integrase and leucine aminopeptidase), Rickettsiaceae (Mfd, ribosomal protein L19, FtsZ, Sigma 70 and exonuclease VII), or Anaplasmataceae (Tgt and RP-314), and they distinguish these groups from all others. Signatures in DnaA, RP-057, and DNA ligase A are commonly shared by various Rhizobiales, Rhodobacterales, and Caulobacter, suggesting that these groups shared a common ancestor exclusive of other alpha-proteobacteria. A specific relationship between Rhodobacterales and Caulobacter is indicated by a large insert in the Asn-Gln amidotransferase. The Rhizobiales group of species are distinguished from others by a large insert in the Trp-tRNA synthetase. Signature sequences in a number of other proteins (viz. oxoglutarate dehydogenase, succinyl-CoA synthase, LytB, DNA gyrase A, LepA, and Ser-tRNA synthetase) serve to distinguish the Rhizobiaceae, Brucellaceae, and Phyllobacteriaceae families from Bradyrhizobiaceae and Methylobacteriaceae. Based on the distribution patterns of these signatures, it is now possible to logically deduce a model for the branching order among alpha-proteobacteria, which is as follows: Rickettsiales --> Rhodospirillales-Sphingomonadales --> Rhodobacterales-Caulobacterales --> Rhizobiales (Rhizobiaceaea-Brucellaceae-Phyllobacteriaceae, and Bradyrhizobiaceae). The deduced branching order is also consistent with the topologies in the 16 rRNA and other phylogenetic trees. Signature sequences in a number of other proteins provide evidence that alpha-proteobacteria is a late branching taxa within Bacteria, which branched after the delta,epsilon-subdivisions but prior to the beta,gamma-proteobacteria. The shared presence of many of these signatures in the mitochondrial (eukaryotic) homologs also provides evidence of the alpha-proteobacterial ancestry of mitochondria.

Similar articles

See all similar articles

Cited by 19 articles

See all "Cited by" articles

Publication types


LinkOut - more resources