Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites
- PMID: 16002454
- PMCID: PMC1474764
- DOI: 10.1113/jphysiol.2005.086793
Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites
Abstract
We performed simultaneous patch-electrode recordings from the soma and apical dendrite of CA1 pyramidal neurons in hippocampal slices, in order to determine the degree of voltage attenuation along CA1 dendrites. Fifty per cent attenuation of steady-state somatic voltage changes occurred at a distance of 238 microm from the soma in control and 409 microm after blocking the hyperpolarization-activated (H) conductance. The morphology of three neurons was reconstructed and used to generate computer models, which were adjusted to fit the somatic and dendritic voltage responses. These models identify several factors contributing to the voltage attenuation along CA1 dendrites, including high axial cytoplasmic resistivity, low membrane resistivity, and large H conductance. In most cells the resting membrane conductances, including the H conductances, were larger in the dendrites than the soma. Simulations suggest that synaptic potentials attenuate enormously as they propagate from the dendrite to the soma, with greater than 100-fold attenuation for synapses on many small, distal dendrites. A prediction of this powerful EPSP attenuation is that distal synaptic inputs are likely only to be effective in the presence of conductance scaling, dendritic excitability, or both.
Figures
Similar articles
-
Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites.J Neurophysiol. 2001 Dec;86(6):2998-3010. doi: 10.1152/jn.2001.86.6.2998. J Neurophysiol. 2001. PMID: 11731556
-
Action potential initiation and propagation in rat neocortical pyramidal neurons.J Physiol. 1997 Dec 15;505 ( Pt 3)(Pt 3):617-32. doi: 10.1111/j.1469-7793.1997.617ba.x. J Physiol. 1997. PMID: 9457640 Free PMC article.
-
Determinants of voltage attenuation in neocortical pyramidal neuron dendrites.J Neurosci. 1998 May 15;18(10):3501-10. doi: 10.1523/JNEUROSCI.18-10-03501.1998. J Neurosci. 1998. PMID: 9570781 Free PMC article.
-
Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons.Cell Mol Life Sci. 2012 Jan;69(1):75-88. doi: 10.1007/s00018-011-0769-4. Epub 2011 Jul 28. Cell Mol Life Sci. 2012. PMID: 21796451 Free PMC article. Review.
-
Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells.Hippocampus. 2005;15(3):302-15. doi: 10.1002/hipo.20051. Hippocampus. 2005. PMID: 15490464 Review.
Cited by
-
Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.Neuron. 2016 Jun 1;90(5):1043-56. doi: 10.1016/j.neuron.2016.03.029. Epub 2016 Apr 28. Neuron. 2016. PMID: 27133465 Free PMC article.
-
Unique membrane properties and enhanced signal processing in human neocortical neurons.Elife. 2016 Oct 6;5:e16553. doi: 10.7554/eLife.16553. Elife. 2016. PMID: 27710767 Free PMC article.
-
Methodological Considerations on the Use of Different Spectral Decomposition Algorithms to Study Hippocampal Rhythms.eNeuro. 2019 Aug 1;6(4):ENEURO.0142-19.2019. doi: 10.1523/ENEURO.0142-19.2019. Print 2019 Jul/Aug. eNeuro. 2019. PMID: 31324673 Free PMC article.
-
Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons.Brain Struct Funct. 2015 Nov;220(6):3143-65. doi: 10.1007/s00429-014-0848-z. Epub 2014 Jul 17. Brain Struct Funct. 2015. PMID: 25031178 Free PMC article.
-
Long-term Potentiation at Temporoammonic Path-CA1 Synapses in Freely Moving Rats.Front Neural Circuits. 2016 Feb 10;10:2. doi: 10.3389/fncir.2016.00002. eCollection 2016. Front Neural Circuits. 2016. PMID: 26903815 Free PMC article.
References
-
- Bannister NJ, Larkman AU. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus. I. Branching patterns. J Comp Neurol. 1995a;360:150–160. - PubMed
-
- Bannister NJ, Larkman AU. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus. II. Spine distributions. J Comp Neurol. 1995b;360:161–171. - PubMed
-
- Berger T, Larkum ME, Luscher HR. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol. 2001;85:855–868. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous