Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale
- PMID: 16002612
- DOI: 10.1126/science.1112255
Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale
Abstract
Structural materials in nature exhibit remarkable designs with building blocks, often hierarchically arranged from the nanometer to the macroscopic length scales. We report on the structural properties of biosilica observed in the hexactinellid sponge Euplectella sp. Consolidated, nanometer-scaled silica spheres are arranged in well-defined microscopic concentric rings glued together by organic matrix to form laminated spicules. The assembly of these spicules into bundles, effected by the laminated silica-based cement, results in the formation of a macroscopic cylindrical square-lattice cagelike structure reinforced by diagonal ridges. The ensuing design overcomes the brittleness of its constituent material, glass, and shows outstanding mechanical rigidity and stability. The mechanical benefits of each of seven identified hierarchical levels and their comparison with common mechanical engineering strategies are discussed.
Comment in
-
Materials science. Hierarchies in biomineral structures.Science. 2005 Jul 8;309(5732):253-4. doi: 10.1126/science.1113954. Science. 2005. PMID: 16002605 No abstract available.
Similar articles
-
Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum.J Struct Biol. 2007 Apr;158(1):93-106. doi: 10.1016/j.jsb.2006.10.027. Epub 2006 Nov 10. J Struct Biol. 2007. PMID: 17175169
-
Materials science. Hierarchies in biomineral structures.Science. 2005 Jul 8;309(5732):253-4. doi: 10.1126/science.1113954. Science. 2005. PMID: 16002605 No abstract available.
-
Role of biosilica in materials science: lessons from siliceous biological systems for structural composites.Prog Mol Subcell Biol. 2009;47:277-94. doi: 10.1007/978-3-540-88552-8_12. Prog Mol Subcell Biol. 2009. PMID: 19198782
-
Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.Int Rev Cell Mol Biol. 2009;273:69-115. doi: 10.1016/S1937-6448(08)01803-0. Int Rev Cell Mol Biol. 2009. PMID: 19215903 Review.
-
Biogenic inorganic polysilicates (biosilica): formation and biomedical applications.Prog Mol Subcell Biol. 2013;54:197-234. doi: 10.1007/978-3-642-41004-8_8. Prog Mol Subcell Biol. 2013. PMID: 24420715 Review.
Cited by 103 articles
-
Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms.Adv Sci (Weinh). 2022 May;9(14):e2103524. doi: 10.1002/advs.202103524. Epub 2022 Mar 22. Adv Sci (Weinh). 2022. PMID: 35315243 Free PMC article. Review.
-
Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges.Adv Sci (Weinh). 2022 Apr;9(11):e2105059. doi: 10.1002/advs.202105059. Epub 2022 Feb 13. Adv Sci (Weinh). 2022. PMID: 35156333 Free PMC article.
-
Understanding the Adhesion Mechanism of Hydroxyapatite-Binding Peptide.Langmuir. 2022 Jan 25;38(3):968-978. doi: 10.1021/acs.langmuir.1c02293. Epub 2022 Jan 7. Langmuir. 2022. PMID: 34995466 Free PMC article.
-
Hierarchical Interfaces as Fracture Propagation Traps in Natural Layered Composites.Materials (Basel). 2021 Nov 13;14(22):6855. doi: 10.3390/ma14226855. Materials (Basel). 2021. PMID: 34832257 Free PMC article.
-
From Inner Topological Structure to Functional Nanofibers: Theoretical Analysis and Experimental Verification.Membranes (Basel). 2021 Nov 12;11(11):870. doi: 10.3390/membranes11110870. Membranes (Basel). 2021. PMID: 34832098 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
