Characterization of 17alpha-hydroxysteroid dehydrogenase activity (17alpha-HSD) and its involvement in the biosynthesis of epitestosterone

BMC Biochem. 2005 Jul 14;6:12. doi: 10.1186/1471-2091-6-12.


Background: Epi-testosterone (epiT) is the 17alpha-epimer of testosterone. It has been found at similar level as testosterone in human biological fluids. This steroid has thus been used as a natural internal standard for assessing testosterone abuse in sports. EpiT has been also shown to accumulate in mammary cyst fluid and in human prostate. It was found to possess antiandrogenic activity as well as neuroprotective effects. So far, the exact pathway leading to the formation of epiT has not been elucidated.

Results: In this report, we describe the isolation and characterization of the enzyme 17alpha-hydroxysteroid dehydrogenase. The name is given according to its most potent activity. Using cells stably expressing the enzyme, we show that 17alpha-HSD catalyzes efficienty the transformation of 4-androstenedione (4-dione), dehydroepiandrosterone (DHEA), 5alpha-androstane-3,17-dione (5alpha-dione) and androsterone (ADT) into their corresponding 17alpha-hydroxy-steroids : epiT, 5-androstene-3beta,17alpha-diol (epi5diol), 5alpha-androstane-17alpha-ol-3-one (epiDHT) and 5alpha-androstane-3alpha,17alpha-diol (epi3alpha-diol), respectively. Similar to other members of the aldo-keto reductase family that possess the ability to reduce the keto-group into hydroxyl-group at different position on the steroid nucleus, 17alpha-HSD could also catalyze the transformation of DHT, 5alpha-dione, and 5alpha-pregnane-3,20-dione (DHP) into 3alpha-diol, ADT and 5alpha-pregnane-3alpha-ol-20-one (allopregnanolone) through its less potent 3alpha-HSD activity. We also have over-expressed the 17alpha-HSD in Escherichia coli and have purified it by affinity chromatography. The purified enzyme exhibits the same catalytic properties that have been observed with cultured HEK-293 stably transfected cells. Using quantitative Realtime-PCR to study tissue distribution of this enzyme in the mouse, we observed that it is expressed at very high levels in the kidney.

Conclusion: The present study permits to clarify the biosynthesis pathway of epiT. It also offers the opportunity to study gene regulation and function of this enzyme. Further study in human will allow a better comprehension about the use of epiT in drug abuse testing; it will also help to clarify the importance of its accumulation in breast cyst fluid and prostate, as well as its potential role as natural antiandrogen.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Line
  • Enzyme Activation / physiology
  • Epitestosterone / biosynthesis*
  • Epitestosterone / genetics
  • Female
  • Humans
  • Hydroxysteroid Dehydrogenases / chemistry*
  • Hydroxysteroid Dehydrogenases / genetics
  • Hydroxysteroid Dehydrogenases / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Molecular Sequence Data


  • Epitestosterone
  • Hydroxysteroid Dehydrogenases
  • 3(17)-hydroxysteroid dehydrogenase