Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks
- PMID: 16020754
- PMCID: PMC1352308
- DOI: 10.1161/01.RES.0000177669.29525.78
Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks
Abstract
Mitochondria regulate intracellular calcium (Ca2+) signals in smooth muscle cells, but mechanisms mediating these effects, and the functional relevance, are poorly understood. Similarly, antihypertensive ATP-sensitive potassium (KATP) channel openers (KCOs) activate plasma membrane KATP channels and depolarize mitochondria in several cell types, but the contribution of each of these mechanisms to vasodilation is unclear. Here, we show that cerebral artery smooth muscle cell mitochondria are most effectively depolarized by diazoxide (-15%, tetramethylrhodamine [TMRM]), less so by levcromakalim, and not depolarized by pinacidil. KCO-induced mitochondrial depolarization increased the generation of mitochondria-derived reactive oxygen species (ROS) that stimulated Ca2+ sparks and large-conductance Ca2+-activated potassium (KCa) channels, leading to transient KCa current activation. KCO-induced mitochondrial depolarization and transient KCa current activation were attenuated by 5-HD and glibenclamide, KATP channel blockers. MnTMPyP, an antioxidant, and Ca2+ spark and KCa channel blockers reduced diazoxide-induced vasodilations by >60%, but did not alter dilations induced by pinacidil, which did not elevate ROS. Data suggest diazoxide drives ROS generation by inducing a small mitochondrial depolarization, because nanomolar CCCP, a protonophore, similarly depolarized mitochondria, elevated ROS, and activated transient KCa currents. In contrast, micromolar CCCP, or rotenone, an electron transport chain blocker, induced a large mitochondrial depolarization (-84%, TMRM), reduced ROS, and inhibited transient KCa currents. In summary, data demonstrate that mitochondria-derived ROS dilate cerebral arteries by activating Ca2+ sparks, that some antihypertensive KCOs dilate by stimulating this pathway, and that small and large mitochondrial depolarizations lead to differential regulation of ROS and Ca2+ sparks.
Figures
Comment in
-
Mitochondria and reactive oxygen species: an evolution in function.Circ Res. 2005 Aug 19;97(4):302-4. doi: 10.1161/01.RES.0000179773.18195.12. Circ Res. 2005. PMID: 16109924 No abstract available.
Similar articles
-
Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.J Physiol. 2004 May 1;556(Pt 3):755-71. doi: 10.1113/jphysiol.2003.059568. Epub 2004 Feb 6. J Physiol. 2004. PMID: 14766935 Free PMC article.
-
Sulfonylurea receptor-dependent and -independent pathways mediate vasodilation induced by ATP-sensitive K+ channel openers.Mol Pharmacol. 2008 Sep;74(3):736-43. doi: 10.1124/mol.108.048165. Epub 2008 May 29. Mol Pharmacol. 2008. PMID: 18511652 Free PMC article.
-
Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats.Am J Physiol Heart Circ Physiol. 2014 Aug 15;307(4):H493-503. doi: 10.1152/ajpheart.00091.2014. Am J Physiol Heart Circ Physiol. 2014. PMID: 24929852 Free PMC article.
-
Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.Acta Physiol Scand. 1998 Dec;164(4):577-87. doi: 10.1046/j.1365-201X.1998.00462.x. Acta Physiol Scand. 1998. PMID: 9887980 Review.
-
Ca2+ channels, Ca2+ sparks, and regulation of arterial smooth muscle function.Z Kardiol. 2000;89 Suppl 2:15-9. doi: 10.1007/s003920070095. Z Kardiol. 2000. PMID: 10769399 Review.
Cited by
-
Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving KATP channel activation in smooth muscle cells of arteries.Br J Pharmacol. 2016 Nov;173(21):3145-3158. doi: 10.1111/bph.13578. Epub 2016 Sep 9. Br J Pharmacol. 2016. PMID: 27534899 Free PMC article.
-
Hydrogen sulfide activates Ca²⁺ sparks to induce cerebral arteriole dilatation.J Physiol. 2012 Jun 1;590(11):2709-20. doi: 10.1113/jphysiol.2011.225128. Epub 2012 Apr 16. J Physiol. 2012. PMID: 22508960 Free PMC article.
-
Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension.Antioxid Redox Signal. 2014 Jan 10;20(2):281-94. doi: 10.1089/ars.2012.4918. Epub 2013 Oct 30. Antioxid Redox Signal. 2014. PMID: 24053613 Free PMC article.
-
Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance.Am J Physiol Regul Integr Comp Physiol. 2009 Feb;296(2):R289-98. doi: 10.1152/ajpregu.90656.2008. Epub 2008 Nov 12. Am J Physiol Regul Integr Comp Physiol. 2009. PMID: 19005015 Free PMC article.
-
Crosstalk signaling between mitochondrial Ca2+ and ROS.Front Biosci (Landmark Ed). 2009 Jan 1;14(4):1197-218. doi: 10.2741/3303. Front Biosci (Landmark Ed). 2009. PMID: 19273125 Free PMC article. Review.
References
-
- Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol. 2000;278:C235–C256. - PubMed
-
- Perez GJ, Bonev AD, Nelson MT. Micromolar Ca2+ from sparks activates Ca2+-sensitive K+ channels in rat cerebral artery smooth muscle. Am J Physiol. 2001;281:C1769–C1775. - PubMed
-
- Jaggar JH, Leffler CW, Cheranov SY, Tcheranova DES, Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res. 2002;91:610–617. - PubMed
-
- Wang YX, Zheng YM, Abdullaev I, Kotlikoff MI. Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes. Am J Physiol. 2003;284:C378–C388. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
