NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release

Mol Cell Biol. 2005 Aug;25(15):6533-45. doi: 10.1128/MCB.25.15.6533-6545.2005.


Muscle wasting (cachexia) is a consequence of chronic diseases, such as cancer, and is associated with degradation of muscle proteins such as MyoD. The cytokines tumor necrosis factor alpha and gamma interferon induce muscle degeneration by activating the transcription factor NF-kappaB and its target genes. Here, we show that a downstream target of NF-kappaB is the nitric oxide (NO) synthase gene (iNos) and suggest that NO production stimulates MyoD mRNA loss. In fact, although cytokine treatment of iNos(-/-) mice activated NF-kappaB, it did not trigger MyoD mRNA degeneration, demonstrating that NF-kappaB-mediated muscle wasting requires an active iNOS-NO pathway. The induced expression of iNOS by cytokines relies on both transcriptional activation via NF-kappaB and increased mRNA stability via the RNA-binding protein HuR. Moreover, we show that HuR regulates iNOS expression in an AMP-activated protein kinase (AMPK)-dependent manner. Furthermore, AMPK activation results in HuR nuclear sequestration, inhibition of iNOS synthesis, and reduction in cytokine-induced MyoD loss. These results define iNOS and HuR as critical players in cytokine-induced cachexia, establishing them as potential therapeutic targets.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, Surface
  • Cell Line
  • Cytokines / metabolism
  • ELAV Proteins
  • ELAV-Like Protein 1
  • Gene Expression Regulation / physiology
  • Interferon-gamma / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Muscle Fibers, Skeletal / metabolism
  • MyoD Protein / metabolism*
  • NF-kappa B / physiology*
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase / genetics*
  • Nitric Oxide Synthase / metabolism*
  • Nitric Oxide Synthase Type II
  • RNA Processing, Post-Transcriptional / physiology
  • RNA Stability / genetics*
  • RNA, Messenger / metabolism
  • RNA-Binding Proteins / metabolism*
  • Tumor Necrosis Factor-alpha / metabolism
  • Wasting Syndrome / enzymology
  • Wasting Syndrome / metabolism*


  • Antigens, Surface
  • Cytokines
  • ELAV Proteins
  • ELAV-Like Protein 1
  • ELAVL1 protein, human
  • MyoD Protein
  • NF-kappa B
  • RNA, Messenger
  • RNA-Binding Proteins
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide
  • Interferon-gamma
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nos2 protein, mouse