Growth form evolution and shifting habitat specialization in annual plants

J Evol Biol. 2005 Jul;18(4):1009-18. doi: 10.1111/j.1420-9101.2005.00904.x.


Optimal plant growth form should vary across environments. We examined the potential for mutations causing large changes in growth form to produce new optimal phenotypes across light environments. We predicted that the upright growth form would be favoured in a light limiting environment as leaves were in a position to maximize light interception, while a rosette (leaves in a basal position) growth form would be favoured in a high light environment. Growth form genotypes of Brassica rapa (upright wild-type and rosette mutants) and Arabidopsis thaliana (large rosette wild-type and increasingly upright growth form mutants) were grown in a greenhouse in control (ambient) and filtered (low) light treatments. Compared to upright genotypes, rosette genotypes had relatively high fitness in control light but had a relatively large fitness reduction in filtered light. Our results demonstrate the potential importance of rapid growth form evolution in plant adaptation to new or changing environments.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / genetics*
  • Analysis of Variance
  • Arabidopsis / genetics
  • Arabidopsis / growth & development*
  • Biological Evolution*
  • Brassica rapa / genetics
  • Brassica rapa / growth & development*
  • Environment*
  • Genotype
  • Light*
  • Mutation / genetics
  • Plant Leaves / genetics
  • Plant Leaves / growth & development*