How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

Eur J Neurosci. 2005 Jul;22(2):495-504. doi: 10.1111/j.1460-9568.2005.04233.x.


Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Analysis of Variance
  • Biomechanical Phenomena
  • Brain Mapping*
  • Electric Stimulation*
  • Electrodes
  • Hand / physiology
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Male
  • Middle Aged
  • Motor Cortex / blood supply
  • Motor Cortex / cytology*
  • Motor Cortex / radiation effects*
  • Movement / physiology
  • Movement / radiation effects
  • Neurons / diagnostic imaging
  • Neurons / physiology
  • Neurons / radiation effects*
  • Positron-Emission Tomography / methods
  • Psychomotor Performance / physiology
  • Psychomotor Performance / radiation effects
  • Regional Blood Flow / physiology