Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug;113(4):279-88.
doi: 10.1111/j.1600-0722.2005.00229.x.

The relationship between baseline value and its change: problems in categorization and the proposal of a new method

Affiliations
Review

The relationship between baseline value and its change: problems in categorization and the proposal of a new method

Yu-Kang Tu et al. Eur J Oral Sci. 2005 Aug.

Abstract

Oral health researchers have shown great interest in the relationship between the initial status of diseases and subsequent changes following treatment. Two main approaches have been adopted to provide evidence of a positive association between baseline values and their changes following treatment. One approach is to use correlation or regression to test the relationship between baseline measurements and subsequent change (correlation/regression approach). The second approach is to categorize the lesions into subgroups, according to threshold values, and subsequently compare the treatment effects across the two (or more) subgroups (categorization approach). However, the correlation/regression approach suffers a methodological weakness known as mathematical coupling. Consequently, the statistical procedure of testing the null hypothesis becomes inappropriate. Categorization seems to avoid the problem of mathematical coupling, although it still suffers regression to the mean. We show, first, how the appropriate null hypothesis may be established to analyze the relationship between baseline values and change in the correlation approach and, second, we use computer simulations to investigate the impact of regression to the mean on the significance testing of the differences in the average treatment effects (or average baseline values) in the categorization approach. Data available from previous literature are reanalyzed by testing the appropriate null hypotheses and the results are compared to those from testing the usual (incorrect) null hypothesis. The results indicate that both the correlation and categorization approaches can give rise to misleading conclusions and that more appropriate methods, such as Oldham's method and our new approach of deriving the correct null hypothesis, should be adopted.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources