Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
- PMID: 16054090
- DOI: 10.1016/j.cmet.2005.05.002
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
Abstract
Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic stabilization of HIF-1 alpha protein. Fibroblasts from a patient with Leigh's syndrome, which display residual levels of electron transport activity and are incompetent in oxidative phosphorylation, stabilize HIF-1 alpha during hypoxia. The expression of glutathione peroxidase or catalase, but not superoxide dismutase 1 or 2, prevents the hypoxic stabilization of HIF-1 alpha. These findings provide genetic evidence that oxygen sensing is dependent on mitochondrial-generated reactive oxygen species (ROS) but independent of oxidative phosphorylation.
Comment in
-
ROS: really involved in oxygen sensing.Cell Metab. 2005 Jun;1(6):357-8. doi: 10.1016/j.cmet.2005.05.006. Cell Metab. 2005. PMID: 16054083
Similar articles
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.Cell Metab. 2005 Jun;1(6):401-8. doi: 10.1016/j.cmet.2005.05.001. Cell Metab. 2005. PMID: 16054089
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing.J Biol Chem. 2000 Aug 18;275(33):25130-8. doi: 10.1074/jbc.M001914200. J Biol Chem. 2000. PMID: 10833514
-
Genetics of mitochondrial electron transport chain in regulating oxygen sensing.Methods Enzymol. 2007;435:447-61. doi: 10.1016/S0076-6879(07)35023-4. Methods Enzymol. 2007. PMID: 17998068
-
Mitochondrial complex III regulates hypoxic activation of HIF.Cell Death Differ. 2008 Apr;15(4):660-6. doi: 10.1038/sj.cdd.4402307. Epub 2008 Jan 25. Cell Death Differ. 2008. PMID: 18219320 Review.
-
Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.Exp Physiol. 2006 Sep;91(5):807-19. doi: 10.1113/expphysiol.2006.033506. Epub 2006 Jul 20. Exp Physiol. 2006. PMID: 16857720 Review.
Cited by
-
Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.Compr Physiol. 2013 Apr;3(2):849-915. doi: 10.1002/cphy.c120003. Compr Physiol. 2013. PMID: 23720333 Free PMC article. Review.
-
Maintenance of mitochondrial oxygen homeostasis by cosubstrate compensation.Biophys J. 2013 Mar 19;104(6):1338-48. doi: 10.1016/j.bpj.2013.01.030. Epub 2013 Mar 19. Biophys J. 2013. PMID: 23528093 Free PMC article.
-
Hypoxia and classical activation limits Mycobacterium tuberculosis survival by Akt-dependent glycolytic shift in macrophages.Cell Death Discov. 2016 May 30;2:16022. doi: 10.1038/cddiscovery.2016.22. eCollection 2016. Cell Death Discov. 2016. PMID: 27551515 Free PMC article.
-
Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α.Circ Res. 2013 Apr 12;112(8):1135-49. doi: 10.1161/CIRCRESAHA.111.300171. Epub 2013 Mar 8. Circ Res. 2013. PMID: 23476056 Free PMC article.
-
The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes.Diabetologia. 2012 Jul;55(7):2069-79. doi: 10.1007/s00125-012-2557-6. Epub 2012 May 2. Diabetologia. 2012. PMID: 22549734 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
