A parametric imaging approach for the segmentation of ultrasound data

Ultrasonics. 2005 Dec;43(10):789-801. doi: 10.1016/j.ultras.2005.06.001. Epub 2005 Jul 6.

Abstract

When an ultrasonic examination is performed, a segmentation tool would often be very useful, either for the detection of pathologies, the early diagnosis of cancer or the follow-up of the lesions. Such a tool must be both reliable and accurate. However, because of the relatively reduced quality of ultrasound images due to the speckled texture, the segmentation of ultrasound data is a difficult task. We have previously proposed to tackle the problem using a multiresolution Bayesian region-based algorithm. For computation time purposes, a multiresolution version has been implemented. In order to improve the quality of the segmentation, we propose to perform the segmentation not only from the envelope image but to combine more information about the properties of the tissues in the segmentation process. Several acoustical parameters have thus been computed, either directly from the images or from the radio-frequency (RF) signal. In a previous study, two parametric images were involved in the segmentation process. The parameter represented the integrated backscatter (IBS) and the mean central frequency (MCF), which is a measurement related to the attenuation of ultrasound waves in the media. In this study, parameters representative of the scattering conditions in the tissue are evaluated in the multiparametric segmentation process. They are extracted from the K-distribution (alpha,b) and the Nakagami distribution (m,Omega) and are related to the local density of scatterers (alpha,m), the size of the scatterers (b) and the backscattering properties of the medium (Omega). The acoustical features are calculated locally on a sliding window. This procedure allows to built parametric mapping representing the particular characteristics of the medium. To test the influence of the acoustical parameters in the segmentation process, a set of numerical phantoms has been computed using the Field software developed by J.A. Jensen. Each phantom consists in two regions with two different acoustical properties: the density of scatterers and the scattering amplitude. From both the simulated RF signals and envelope images, the parameters have been computed; their relevance to represent a particular characteristic of the medium is evaluated. The segmentation has been processed for each phantom. The ability of each parameter to improve the segmentation results is validated. A agar-gel phantom has also been created, in order to test the accuracy of the parameters in conditions closer to the in vivo ultrasound imaging. This phantom contains four inclusions with different concentrations of silica. A B&K ultrasound device provides the RF data. The quantification of the segmentation quality is based on the rate of correctly classified pixels and it has been computed for all the parameters either from the field images or the phantom images. The large improvement in the segmentation results obtained reveals that the multiparametric segmentation scheme proposed in this study can be a reliable tool for the processing of noisy ultrasound data.

MeSH terms

  • Mathematics
  • Models, Theoretical
  • Phantoms, Imaging
  • Statistics as Topic
  • Ultrasonography / methods*