Metabolic depression in hibernation and major depression: an explanatory theory and an animal model of depression

Med Hypotheses. 2005;65(5):829-40. doi: 10.1016/j.mehy.2005.05.044.


Metabolic depression, an adaptive biological process for energy preservation, is responsible for torpor, hibernation and estivation. We propose that a form of metabolic depression, and not mitochondrial dysfunction, is the process underlying the observed hypometabolism, state-dependent neurobiological changes and vegetative symptoms of major depression in humans. The process of metabolic depression is reactivated via differential gene expression in response to perceived adverse stimuli in predisposed persons. Behavior inhibition by temperament, anxiety disorders, genetic vulnerabilities, and early traumatic experiences predispose persons to depression. The proposed theory is supported by similarities in the presentation and neurobiology of hibernation in bears and major depression and explains the yet unexplained neurobiological changes of depression. Although, gene expression is suppressed in other hibernators by deep hypothermia, bears were chosen because they hibernate with mild hypothermia. Pre-hibernation in bears and major depression with atypical features are both characterized by fat storage through overeating, oversleeping, and decreased mobility. Hibernation in bears and major depression with melancholic features are characterized by withdrawal from the environment, lack of energy, loss of weight from not eating and burning stored fat, changes in sleep pattern, and the following similar neurobiological findings: reversible subclinical hypothyroidism; increased concentration of serum cortisol; acute phase protein response; low respiratory quotient; oxidative stress response; decreased neurotransmitter levels; and changes in cyclic-adenosine monophosphate-binding activity. Signaling systems associated with protein phosphorylation, transcription factors, and gene expression are responsible for the metabolic depression process during pre-hibernation and hibernation. Antidepressants and mood stabilizers interfere with the hibernation process and produce their therapeutic effects by normalizing the fluctuation of activities in the different signaling systems, which are down-regulated during hibernation and depression and up-regulated during exodus from hibernation and the hypomanic or manic phase of mood disorders. The ways individuals cognitively perceive, understand, communicate, and react to the vegetative symptoms of depression, from downregulation in energy production, and in the absence of known medical causes, produce the other characteristics of depression including guilt, helplessness, hopelessness, suicidal phenomena, agitation, panic attacks, psychotic symptoms, and sudden switch to hypomanic or manic episodes. The presence of one or more of these characteristics depends on the person's neuropsychological function, its social status between the others, and the other's response to the person. Neurobiological changes associated with metabolic depression during entrance, maintenance, and exodus from hibernation in bears is suggested as a natural animal model of human depression and mood disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Depressive Disorder, Major / complications
  • Depressive Disorder, Major / physiopathology*
  • Depressive Disorder, Major / psychology
  • Disease Models, Animal*
  • Hibernation*
  • Humans
  • Metabolic Diseases / complications
  • Metabolic Diseases / physiopathology*
  • Metabolic Diseases / psychology
  • Models, Biological*
  • Ursidae