Genetic contributors toward increased risk for ischemic heart disease

J Mol Cell Cardiol. 2005 Oct;39(4):667-79. doi: 10.1016/j.yjmcc.2005.06.006.

Abstract

Cardiovascular disease is a leading cause of mortality in the United States, and is a significant cause of death worldwide. In 2002, it accounted for 38.0% of all deaths in the US, and approximately one-third of all global deaths. It has a significant economic impact, with an estimated cost in the US of 393.5 billion US dollars for 2005. The most common form of heart disease is coronary heart disease (CHD)(1)/coronary artery disease (CAD) resulting from atherosclerosis. Thirteen million Americans are affected by CHD annually, with 7.1 million of these experiencing a myocardial infarction (MI). Five to ten percent of new MI's occur in individuals younger than age 50, and the lifetime risk of developing CAD after age 40 ranges from 32% in women to 49% in men. Because of its major impact on morbidity and mortality, as well as its contribution to annual health care costs, it is of the utmost importance that improved strategies for preventing and treating CAD be developed. A promising, but inherently difficult, area of study is the identification of genes that predispose to or directly cause CAD. The identification of these genes may lead to screening tests that will allow persons at risk for developing CAD to be identified early enough that prevention/intervention strategies can be implemented to prevent or ameliorate the disease process, and may also lead to the development of gene therapy mechanisms useful in the treatment of ischemic heart disease (IHD). Because an exhaustive review of all the genes being studied in relation to CAD and MI is difficult within the confines of a review article, this review will focus on describing representative studies investigating the genes considered most likely to potentially contribute toward an increased risk for CAD and MI. Genes resulting in inherited disorders with which an increased risk of CAD and MI is associated will be discussed, as well as a number of candidate genes that may play a role in the multifactorial inheritance of CHD risk.

Publication types

  • Review

MeSH terms

  • Coronary Artery Disease / epidemiology
  • Coronary Artery Disease / genetics*
  • Genetic Predisposition to Disease*
  • Humans
  • Myocardial Ischemia / epidemiology
  • Myocardial Ischemia / genetics*
  • Risk Factors