Discrepancies between catheter tip and tissue temperature in cooled-tip ablation: relevance to guiding left atrial ablation

Circulation. 2005 Aug 16;112(7):954-60. doi: 10.1161/CIRCULATIONAHA.104.492439. Epub 2005 Aug 8.

Abstract

Background: It is not known whether catheter tip temperatures with a cooled-tip ablation can be reliably extrapolated to estimate actual tissue temperatures. The relationship between catheter tip temperatures, tissue temperatures, power, and microbubble formation is not known.

Methods and results: Nine dogs underwent 111 radiofrequency energy deliveries at the pulmonary vein ostia with a cooled-tip catheter. Catheter tip and tissue temperatures were markedly discrepant. Catheter tip temperature plateaus at 36 degrees C to 39 degrees C with increasing power, whereas tissue temperature increases to a mean of 75+/-3 degrees C at 45 W (maximum temperature >100 degrees C). Seventy-two energy deliveries were performed, titrating power to microbubble formation guided by intracardiac echocardiography. Type I and II microbubble formation occurred in 45 (63%) and 19 (26%) ablations, respectively. Type I microbubble emergence occurred at lower powers (21+/-8 versus 26+/-4 W; P=0.05), catheter tip temperatures (38+/-5 degrees C versus 48+/-10 degrees C; P=0.02), and tissue temperatures (65+/-19 degrees C versus 81+/-9 degrees C; P<0.001) than type II microbubble formation. Maximum impedance decreases during ablation before microbubble formation were less with type I microbubble (20+/-9 versus 37+/-11 Omega; P<0.001) compared with type II microbubbles. One quarter of type I microbubbles abruptly transitioned to type II microbubbles with significant changes in power or catheter tip temperature. No microbubbles were seen in 19 ablations (26%) despite powers up to 26+/-9 W and tissue temperatures up to 81+/-17 degrees C.

Conclusions: Catheter tip and tissue temperatures are markedly discrepant during cooled-tip ablation. Type I and II microbubble formation occurs at overlapping power and catheter tip and tissue temperature ranges. Neither the absence of microbubbles nor the presence of type I microbubble formation ensures against excessive tissue heating. The appearance of microbubbles may indicate possible tissue overheating and signal a need to decrease energy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Body Temperature
  • Catheter Ablation / instrumentation*
  • Catheter Ablation / methods*
  • Dogs
  • Echocardiography
  • Equipment Design
  • Models, Animal
  • Monitoring, Physiologic
  • Radio Waves