Quasielastic 3He(e,e'p)2H reaction at Q2 = 1.5 GeV2 for recoil momenta up to 1 GeV/c

Phys Rev Lett. 2005 May 20;94(19):192302. doi: 10.1103/PhysRevLett.94.192302. Epub 2005 May 20.


We have studied the quasielastic 3He(e,e(')p)2H reaction in perpendicular coplanar kinematics, with the energy and the momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e(')p)2H cross section was measured for missing momenta up to 1000 MeV/c, while the A(TL) asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the cross section is described by variational calculations using modern 3He wave functions. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A(TL) asymmetry displays characteristic features of broken factorization with a structure that is similar to that generated by available models.