Although the exact mechanism involved in the long-term depletion of brain serotonin (5-HT) produced by substituted amphetamines is not completely known, evidence suggests that oxidative and/or bioenergetic stress may contribute to 3,4-methylenedioxymethamphetamine (MDMA)-induced 5-HT toxicity. In the present study, the effect of supplementing energy substrates was examined on the long-term depletion of striatal 5-HT and dopamine produced by the local perfusion of MDMA (100 microM) and malonate (100 mM) and the depletion of striatal and hippocampal 5-HT concentrations produced by the systemic administration of MDMA (10 mg/kg i.p. x4). The effect of systemic administration of MDMA on ATP levels in the striatum and hippocampus also was examined. Reverse dialysis of MDMA and malonate directly into the striatum resulted in a 55-70% reduction in striatal concentrations of 5-HT and dopamine, and these reductions were significantly attenuated when MDMA and malonate were co-perfused with nicotinamide (1 mM). Perfusion of nicotinamide or ubiquinone (100 microM) also attenuated the depletion of 5-HT in the striatum and hippocampus produced by the systemic administration of MDMA. Finally, the systemic administration of MDMA produced a 30% decrease in the concentration of ATP in the striatum and hippocampus. These results support the conclusion that MDMA produces a dysregulation of energy metabolism which contributes to the mechanism of MDMA-induced 5-HT neurotoxicity.