The role of high-density lipoprotein in inflammation

Trends Cardiovasc Med. 2005 May;15(4):158-61. doi: 10.1016/j.tcm.2005.05.008.


High-density lipoprotein (HDL) appears to have evolved as part of the innate immune system, which in part uses an enhanced oxidative state as a nonspecific means of protecting against many pathogens. In the absence of acute or chronic inflammation, HDL is anti-inflammatory in mice, rabbits, and humans. However, with the onset of a systemic inflammatory state such as what occurs in atherosclerosis, HDL becomes pro-inflammatory, enhancing the inflammatory response. The major apolipoprotein of HDL is apoA-I, which may be altered by oxidative processes in patients with atherosclerosis. As a result, HDL from such patients is less efficient in promoting cellular cholesterol efflux. The ability of HDL to inhibit the inflammatory properties of oxidized phospholipids and low-density lipoproteins is also significantly altered. In mice and monkeys, the administration of an apoA-I-mimetic peptide renders pro-inflammatory HDL anti-inflammatory, improves HDL-mediated cellular cholesterol efflux; in mice, it dramatically inhibits atherosclerosis. Understanding the role of HDL in inflammation may lead to new diagnostic and therapeutic approaches to atherosclerosis and other inflammatory conditions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Apolipoprotein A-I / metabolism
  • Atherosclerosis / physiopathology*
  • Humans
  • Inflammation / physiopathology*
  • Lipoproteins, HDL / metabolism*


  • Apolipoprotein A-I
  • Lipoproteins, HDL