Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

J Magn Reson. 2005 Nov;177(1):1-8. doi: 10.1016/j.jmr.2005.07.013.


Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site (17)O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. (17)O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Image Enhancement / instrumentation
  • Magnetic Resonance Spectroscopy / instrumentation*
  • Membrane Proteins / chemistry*
  • Nuclear Magnetic Resonance, Biomolecular / instrumentation
  • Sensitivity and Specificity


  • Membrane Proteins