Syngeneic Mouse Mammary Carcinoma Cell Lines: Two Closely Related Cell Lines With Divergent Metastatic Behavior

Clin Exp Metastasis. 2005;22(1):47-59. doi: 10.1007/s10585-005-2908-5.

Abstract

Two cell lines, Met-1(fvb2) and DB-7(fvb2), with different metastatic potential, were derived from mammary carcinomas in FVB/N-Tg(MMTV-PyVmT) and FVB/N-Tg(MMTV-PyVmT ( Y315F/Y322F )) mice, transplanted into syngeneic FVB/N hosts and characterized. The lines maintain a stable morphological and biological phenotype after multiple rounds of in vitro culture and in vivo transplantation. The Met-1(fvb2) line derived from a FVB/N-Tg(MMTV-PyVmT) tumor exhibits invasive growth and 100% metastases when transplanted into the females FVB/N mammary fat pad. The DB-7(fvb2) line derived from the FVB/N-Tg(MMTV-PyVmT ( Y315F/Y322F )) with a "double base" modification at Y315F/Y322F exhibits more rapid growth when transplanted into the mammary fat pad, but a lower rate of metastasis (17%). The Met1(fvb2) cells show high activation of AKT, while DB-7(fvb2) cells show very low levels of AKT activation. The DNA content and gene expression levels of both cell lines are stable over multiple generations. Therefore, these two cell lines provide a stable, reproducible resource for the study of metastasis modulators, AKT molecular pathway interactions, and gene target and marker discovery.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Carcinoma / genetics
  • Carcinoma / metabolism
  • Carcinoma / pathology*
  • Cell Line, Tumor*
  • Female
  • Gene Expression
  • Gene Expression Profiling
  • Mammary Neoplasms, Experimental / genetics
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology*
  • Mice
  • Neoplasm Metastasis
  • Protein-Serine-Threonine Kinases / metabolism
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Receptors, Estrogen / analysis
  • Receptors, Estrogen / metabolism

Substances

  • Proto-Oncogene Proteins
  • Receptors, Estrogen
  • Protein-Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt