Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells

Angiogenesis. 2005;8(1):43-51. doi: 10.1007/s10456-005-5612-9.


Wnts are secreted signaling proteins able to control diverse biological processes such as cell differentiation and proliferation. Many Wnts act through a canonical, beta-catenin signaling pathway. Here, we report that Wnt receptors and transcriptional effectors are expressed in primary human endothelial cells and that Wnt/beta-catenin signaling promotes angiogenesis. Human umbilical vein and microvascular endothelial cells express Wnt receptors, Frizzled-4, -5, -6, and beta-catenin-associated transcription factors, Tcf-1, -3, -4 and Lef-1. In endothelial cells, ectopic expression of Wnt-1 stabilized cytosolic beta-catenin, demonstrating activation of the Wnt/beta-catenin canonical signaling pathway. Expression of Wnt-1 or a stabilized and active form of beta-catenin, beta-cateninS37A, promoted endothelial cell proliferation. Proliferation induced by Wnt/beta-catenin signaling was optimal in the presence of bFGF. beta-cateninS37A expression in endothelial cells promoted survival after growth factor deprivation. Using matrigel assays, Wnt-1 or beta-cateninS37A expression promoted the formation of capillary-like networks. To help define the effectors of Wnt angiogenic function, microarray analysis was used to compare endothelial cells expressing Wnt-1 to control cells. Interleukin-8, a known angiogenic factor, was identified as a transcriptional target of Wnt/beta-catenin signaling in endothelial cells. Expression of either Wnt-1 or beta-cateninS37A induced Interleukin-8 transcripts and secreted protein. We thus conclude that Wnt/beta-catenin signaling promotes angiogenesis possibly via the induction of known angiogenic regulators such as Interleukin-8.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Proliferation
  • Endothelial Cells / physiology*
  • Enzyme-Linked Immunosorbent Assay
  • Humans
  • Interleukin-8 / genetics
  • Interleukin-8 / metabolism
  • Microarray Analysis
  • Proteins / genetics
  • Proteins / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction
  • Transcription Factors / metabolism
  • Transcriptional Activation
  • Transfection


  • Interleukin-8
  • Proteins
  • Transcription Factors