Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;15(3):225-34.
doi: 10.1080/09603120500115298.

Occurrence of Bacteria and Biochemical Markers on Public Surfaces

Affiliations

Occurrence of Bacteria and Biochemical Markers on Public Surfaces

Kelly A Reynolds et al. Int J Environ Health Res. .

Abstract

From 1999-2003, the hygiene of 1061 environmental surfaces from shopping, daycare, and office environments, personal items, and miscellaneous activities (i.e., gymnasiums, airports, movie theaters, restaurants, etc.), in four US cities, was monitored. Samples were analyzed for fecal and total coliform bacteria, protein, and biochemical markers. Biochemical markers, i.e., hemoglobin (blood marker), amylase (mucus, saliva, sweat, and urine marker), and urea (urine and sweat marker) were detected on 3% (26/801); 15% (120/801), and 6% (48/801) of the surfaces, respectively. Protein (general hygiene marker) levels > or = 200 microg/10 cm2 were present on 26% (200/801) of the surfaces tested. Surfaces from children's playground equipment and daycare centers were the most frequently contaminated (biochemical markers on 36%; 15/42 and 46%; 25/54, respectively). Surfaces from the shopping, miscellaneous activities, and office environments were positive for biochemical markers with a frequency of 21% (69/333), 21% (66/308), and 11% (12/105), respectively). Sixty samples were analyzed for biochemical markers and bacteria. Total and fecal coliforms were detected on 20% (12/60) and 7% (4/ 60) of the surfaces, respectively. Half and one-third of the sites positive for biochemical markers were also positive for total and fecal coliforms, respectively. Artificial contamination of public surfaces with an invisible fluorescent tracer showed that contamination from outside surfaces was transferred to 86% (30/ 35) of exposed individual's hands and 82% (29/35) tracked the tracer to their home or personal belongings hours later. Results provide information on the relative hygiene of commonly encountered public surfaces and aid in the identification of priority environments where contaminant occurrence and risk of exposure may be greatest. Children's playground equipment is identified as a priority surface for additional research on the occurrence of and potential exposure to infectious disease causing agents.

Similar articles

See all similar articles

Cited by 19 articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback