Stereology and ultrastructure of the salivary glands of diabetic Nod mice submitted to long-term insulin treatment

Anat Rec A Discov Mol Cell Evol Biol. 2005 Oct;286(2):930-7. doi: 10.1002/ar.a.20236.

Abstract

Insulin-dependent diabetes mellitus compromises the salivary glands, altering their morphology and the mechanisms of salivation, which are fundamental for oral health. Thus, the aim of the present study was to determine the effects of prolonged insulin treatment on the morphology of the salivary glands in Nod mice. Forty-five female mice were divided into five groups: nine positive diabetic Nod mice for 10 days (group 1), nine positive diabetic Nod mice for 20 days (group 2), nine diabetic Nod mice for 10 days (group 3), nine diabetic Nod mice for 20 days (group 4), and nine nondiabetic BALB/c mice (group 5). Animals of groups 3 and 4 received 4-5 U of insulin daily, whereas animals of groups 1, 2, and 5 received the same dose of physiological saline simulating the experimental conditions. Samples of the salivary glands were analyzed by light, transmission, and scanning electron microscopies. The results showed intense alterations in diabetic animals characterized by nuclear and cytoplasmic atrophy, biomembrane disorganization, an increase in fibrillar components of the extracellular matrix, and the presence of inflammatory cells. Insulin treatment exerted positive effects on the recovery of the changes resulting from the diabetic state in both parotid and submandibular glands but the pattern continued to be altered. It can be concluded that, in addition to compromising the processes of tissue maintenance and renewal, tissue destructuring leads to alterations in functional mechanisms in both diabetic animals and animals submitted to glycemic control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose
  • Body Weight / drug effects
  • Cell Nucleus / drug effects
  • Cell Nucleus / ultrastructure
  • Cytoplasm / drug effects
  • Cytoplasm / ultrastructure
  • Diabetes Mellitus, Type 1 / drug therapy
  • Diabetes Mellitus, Type 1 / pathology*
  • Disease Models, Animal
  • Drinking / drug effects
  • Eating / drug effects
  • Female
  • Hypoglycemic Agents / therapeutic use*
  • Image Processing, Computer-Assisted
  • Insulin / therapeutic use*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred NOD
  • Microscopy, Electron, Scanning
  • Microscopy, Electron, Transmission
  • Parotid Gland / drug effects
  • Parotid Gland / pathology*
  • Stromal Cells / drug effects
  • Stromal Cells / ultrastructure
  • Submandibular Gland / drug effects
  • Submandibular Gland / pathology*

Substances

  • Blood Glucose
  • Hypoglycemic Agents
  • Insulin