Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts

Gastroenterology. 2005 Sep;129(3):969-84. doi: 10.1053/j.gastro.2005.06.071.


Background & aims: Interleukin (IL)-22, a member of the IL-10 subfamily, is a recently identified T-cell-derived cytokine. We investigated IL-22 expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD) and analyzed its biologic activities in human colonic subepithelial myofibroblasts (SEMFs).

Methods: Mucosal IL-22 expression was evaluated by immunohistochemical procedures. The effects of IL-22 on colonic SEMFs were investigated by cDNA microarrays, Northern blots, enzyme-linked immunosorbent assay, and electrophoretic gel mobility shift assays (EMSAs).

Results: IL-22 was not detectable in normal colonic mucosa. In IBD mucosa, IL-22 expression was detectable in CD4-positive T cells. IL-22-positive cells were increased in ulcerative colitis and even more so in Crohn's disease. IL-22 receptor expression colocalized with a marker of SEMFs. IL-22 did not modulate SEMF proliferation and collagen synthesis. cDNA microarray analyses demonstrated that, in colonic SEMFs, IL-22 increased the messenger RNA (mRNA) expression of inflammatory cytokines (IL-6, IL-8, IL-11, and leukemia inhibitory factor [LIF]), chemokines, and matrix metalloproteinases. IL-22 induced an activation of nuclear factor (NF)-kappaB and activating protein (AP)-1 within 1 hour, and a blockade of NF-kappaB and AP-1 activation markedly reduced IL-22 induction of IL-6, IL-8, IL-11, and LIF mRNA. MAP-kinase inhibitors (PD98059, U0216, and SB202190) significantly reduced IL-22 induction of cytokine secretion. The combination of either IL-17 plus IL-22 or IL-19 plus IL-22 additively up-regulated cytokine secretion.

Conclusions: IL-22 derived from activated T cells acts on SEMFs to elicit expression of proinflammatory cytokines and matrix-degrading molecules indicating proinflammatory/remodeling roles in IBD.

MeSH terms

  • Colon / pathology
  • Cytokines / pharmacology
  • DNA Replication / drug effects
  • Fibroblasts / drug effects
  • Fibroblasts / pathology
  • Gene Expression Regulation / drug effects
  • Gene Transfer Techniques
  • Humans
  • Inflammatory Bowel Diseases / genetics
  • Inflammatory Bowel Diseases / immunology
  • Inflammatory Bowel Diseases / pathology*
  • Interleukins / genetics*
  • Interleukins / pharmacology*
  • Interleukins / physiology
  • Intestinal Mucosa / drug effects
  • Intestinal Mucosa / pathology*
  • Intestinal Mucosa / physiopathology
  • Oligonucleotide Array Sequence Analysis
  • Promoter Regions, Genetic


  • Cytokines
  • Interleukins
  • interleukin-22