Localization of a disease-associated mutation site in the three-dimensional structure of the cardiac muscle ryanodine receptor

J Biol Chem. 2005 Nov 11;280(45):37941-7. doi: 10.1074/jbc.M505714200. Epub 2005 Sep 11.

Abstract

The cardiac muscle ryanodine receptor (RyR2) functions as a calcium release channel in the heart. Up to 40 mutations in RyR2 have been linked to genetic forms of sudden cardiac death. These mutations are largely clustered in three regions of the sequence of the polypeptide: one near the N terminus, one in the central region, and the third in the C-terminal region. The central region includes 11 mutations, and an isoleucine-proline motif (positions 2427 and 2428) in the same region is predicted to contribute to the binding of FKBP12.6 protein. We have mapped the central mutation site in the three-dimensional structure of RyR2 by green fluorescent protein insertion, cryoelectron microscopy, and single-particle image processing. The central mutation site was mapped to a "bridge" of density that connects cytoplasmic domains 5 and 6, which have been suggested to undergo conformational changes during channel gating. Moreover, the location of this central mutation site is not close to that of the FKBP12.6-binding site mapped previously by cryoelectron microscopy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Gene Expression Regulation
  • Mice
  • Models, Molecular
  • Mutation / genetics*
  • Myocardium / metabolism*
  • Protein Conformation
  • Ryanodine Receptor Calcium Release Channel / chemistry*
  • Ryanodine Receptor Calcium Release Channel / genetics*
  • Ryanodine Receptor Calcium Release Channel / metabolism

Substances

  • Ryanodine Receptor Calcium Release Channel