Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
, 280 (47), 39644-52

X-ray Crystallographic Analysis of 6-aminohexanoate-dimer Hydrolase: Molecular Basis for the Birth of a Nylon Oligomer-Degrading Enzyme

Affiliations
Comparative Study

X-ray Crystallographic Analysis of 6-aminohexanoate-dimer Hydrolase: Molecular Basis for the Birth of a Nylon Oligomer-Degrading Enzyme

Seiji Negoro et al. J Biol Chem.

Abstract

6-Aminohexanoate-dimer hydrolase (EII), responsible for the degradation of nylon-6 industry by-products, and its analogous enzyme (EII') that has only approximately 0.5% of the specific activity toward the 6-aminohexanoate-linear dimer, are encoded on plasmid pOAD2 of Arthrobacter sp. (formerly Flavobacterium sp.) KI72. Here, we report the three-dimensional structure of Hyb-24 (a hybrid between the EII and EII' proteins; EII'-level activity) by x-ray crystallography at 1.8 A resolution and refined to an R-factor and R-free of 18.5 and 20.3%, respectively. The fold adopted by the 392-amino acid polypeptide generated a two-domain structure that is similar to the folds of the penicillin-recognizing family of serine-reactive hydrolases, especially to those of d-alanyl-d-alanine-carboxypeptidase from Streptomyces and carboxylesterase from Burkholderia. Enzyme assay using purified enzymes revealed that EII and Hyb-24 possess hydrolytic activity for carboxyl esters with short acyl chains but no detectable activity for d-alanyl-d-alanine. In addition, on the basis of the spatial location and role of amino acid residues constituting the active sites of the nylon oligomer hydrolase, carboxylesterase, d-alanyl-d-alanine-peptidase, and beta-lactamases, we conclude that the nylon oligomer hydrolase utilizes nucleophilic Ser(112) as a common active site both for nylon oligomer-hydrolytic and esterolytic activities. However, it requires at least two additional amino acid residues (Asp(181) and Asn(266)) specific for nylon oligomer-hydrolytic activity. Here, we propose that amino acid replacements in the catalytic cleft of a preexisting esterase with the beta-lactamase fold resulted in the evolution of the nylon oligomer hydrolase.

Similar articles

See all similar articles

Cited by 10 articles

See all "Cited by" articles

Publication types

MeSH terms

Associated data

LinkOut - more resources

Feedback