Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses

Mol Plant Microbe Interact. 1992 Mar-Apr;5(2):179-86. doi: 10.1094/mpmi-5-179.

Abstract

To investigate the role of dicarboxylate transport in nitrogen-fixing symbioses between Rhizobium and tropical legumes, we made a molecular genetic analysis of the bacterial transport system in Rhizobium sp. NGR234. This braod host range strain fixes nitrogen in association with evolutionarily divergent legumes. Two dicarboxylate transport systems were cloned from Rhizobium NGR234. One locus was chromosomally located, whereas the other was carried on the symbiotic plasmid (pSym) and contained a dctA carrier protein gene, which was analyzed in detail. Although the DNA and derived amino acid sequences of the structural gene were substantially homologous to that of R. meliloti, its promoter sequences was quite distinct, and the upstream sequence also exhibited no homology to dctB, which is found at this position in R. meliloti. A site-directed internal deletion mutant in dctA of NGR234 exhibited a (unique) exclusively symbiotic phenotype that could grow on dicarboxylates ex planta, but could not fix nitrogen in planta. This phenotype was found for tested host plants of NGR234 with either determinate- or indeterminate-type nodules, confirming for the first time that symbiosis-specific uptake of dicarboxylates is a prerequisite for nitrogen fixation in tropical legume symbioses.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / genetics*
  • Base Sequence
  • Biological Transport / genetics
  • Carrier Proteins / genetics*
  • Cloning, Molecular
  • DNA, Bacterial
  • Dicarboxylic Acid Transporters*
  • Dicarboxylic Acids / metabolism*
  • Fabaceae / microbiology*
  • Genes, Bacterial
  • Membrane Transport Proteins / genetics
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Nitrogen Fixation / genetics*
  • Phenotype
  • Plants, Medicinal*
  • Restriction Mapping
  • Rhizobium / genetics
  • Rhizobium / metabolism*
  • Symbiosis

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • DNA, Bacterial
  • Dicarboxylic Acid Transporters
  • Dicarboxylic Acids
  • Membrane Transport Proteins
  • dctA protein, Sinorhizobium meliloti

Associated data

  • GENBANK/J0370B