Objective: The aim of this study was to investigate the effect of excessive mechanical load caused by obesity on the inspiratory muscle performance in obese men at rest.
Methods: We therefore measure at rest spirometric flows and the noninvasive tension time index of inspiratory muscle (TTmus = PI/PImax x TI/TTOT) in eight obese male subjects (body mass index (BMI) > 30) and 10 controls.
Results: Spirometric flow (FEV1% pred, FVC% pred) and maximal inspiratory pressure (PImax) were significantly lower in obese subjects compared to controls (P < 0.001). The mean TTmus was significantly higher in obese subjects than in controls (0.136 +/- 0.003 vs 0.045 +/- 0.01). The increase in TTmus was primarily due to an increase in the ratio of mean inspiratory pressure to maximal inspiratory pressure (PI/PImax) and the duty cycle (TI/TTOT). We found a significant negative relationship between PImax and BMI (r = -0.74, P < 0.001), a positive correlation between TTmus and BMI (r = 0.80, P < 0.001) and a negative correlation between TTmus and forced expiratory volume in 1 s (r = -0.85, P < 0.001).
Conclusion: Excessive mechanical load caused by obesity imposes a great burden on the inspiratory muscle, which may predispose such subjects to respiratory muscle weakness at rest.