Fidelity discrimination in DNA polymerase beta: differing closing profiles for a mismatched (G:A) versus matched (G:C) base pair

J Am Chem Soc. 2005 Sep 28;127(38):13245-52. doi: 10.1021/ja052623o.


Understanding fidelity-the faithful replication or repair of DNA by polymerases-requires tracking of the structural and energetic changes involved, including the elusive transient intermediates, for nucleotide incorporation at the template/primer DNA junction. We report, using path sampling simulations and a reaction network model, strikingly different transition states in DNA polymerase beta's conformational closing for correct dCTP versus incorrect dATP incoming nucleotide opposite a template G. The cascade of transition states leads to differing active-site assembly processes toward the "two-metal-ion catalysis" geometry. We demonstrate that these context-specific pathways imply different selection processes: while active-site assembly occurs more rapidly with the correct nucleotide and leads to primer extension, the enzyme remains open longer, has a more transient closed state, and forms product more slowly when an incorrect nucleotide is present. Our results also suggest that the rate-limiting step in pol beta's conformational closing is not identical to that for overall nucleotide insertion and that the rate-limiting step in the overall nucleotide incorporation process for matched as well as mismatched systems occurs after the closing conformational change.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Pair Mismatch*
  • Base Sequence
  • Computer Simulation
  • DNA Polymerase beta / chemistry*
  • Models, Molecular
  • Time Factors


  • DNA Polymerase beta