Rationale and objectives: To investigate the utility of a computer-aided diagnosis (CAD) in the task of differentiating malignant nodules from benign nodules based on quantitative features extracted from volumetric thin section CT image data acquired before and after the injection of contrast media.
Materials and methods: 35 volumetric CT datasets of solitary pulmonary nodules (SPN) with proven diagnoses (19 malignant/16 benign) were contoured by a thoracic radiologist. All studies had at least a baseline series obtained without contrast media and at least one series following an intravenous contrast injection at 45, 90, 180, and 360 seconds. Two separate contours were created for each nodule: one including only the solid portion and another including the ground-glass component, if any, of the nodule. For each contour 31 features were calculated that measured the attenuation, shape, and enhancement of the nodule due to the injection of contrast. These features were input into a feature selection step and three different classifiers to determine if the diagnosis could be predicted from the resulting feature vector. In addition, observer input was introduced to two of the classifiers as an a priori probability of malignancy and the resulting performance was compared. Training and testing was conducted in a resubstitution and leave-one-out fashion and performance was evaluated using ROC analysis.
Results: In a leave-one-out testing methodology, the classifiers achieved areas under the ROC curves AZ that ranged from 0.69 to 0.92. A classifier based on logistic regression performed the best with an AZ of 0.92 while a classifier based on quadratic discriminant analysis performed the poorest (AZ, 0.69). The AZ increased when using a priori observer input in most cases reaching a maximum of 0.95.
Conclusion: Based on this initial work with a limited number of nodules in our dataset, it appears that CAD using volumetric and contrast-enhanced data has the potential to assist radiologists in the task of differentiating solitary pulmonary nodules and in the management of these patients. Further studies with an increased number of patients are required to validate these results.