Three subtypes of vesicular glutamate transporters, named VGLUT1-3, accumulate glutamate into synaptic vesicles. In this study, the post-natal expression of VGLUT3 was determined with specific probes and antiserums in the rat brain and compared with that of VGLUT1 and VGLUT2. The expression of VGLUT1 and VGLUT2 increases linearly during post-natal development. In contrast, VGLUT3 developmental pattern appears to have a more or less biphasic profile. A first peak of expression is centered around post-natal day 10 (P10) while the second one is reached in the adult brain. Between P1 and P15, VGLUT3 is observed in the frontal brain (striatum, accumbens, and hippocampus) and in the caudal brain (colliculi, pons and cerebellum). During a second phase extending from P15 to adulthood, the labeling of the caudal brain fades away. The adult pattern is reached at P21. We further analyzed the transient expression of VGLUT3 in the cerebellum and found it to correspond to a temporary expression in Purkinje cells. At P10 VGLUT3 immunoreactivity was present both in the soma and terminals of Purkinje cells (PC), where it colocalized with the vesicular inhibitory amino acid transporter (VIAAT). In agreement with data from the literature [Gillespie, D.C., Kim, G., Kandler, K., 2005. Inhibitory synapses in the developing auditory system are glutamatergic. Nat. Neurosci. 8, 332-338], our results suggest that during the first 2 weeks of post-natal life PC may have the potential to transiently release simultaneously GABA and glutamate.