A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels
- PMID: 16186483
- PMCID: PMC1234902
- DOI: 10.1073/pnas.0507170102
A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels
Abstract
Pseudomonas aeruginosa causes chronic biofilm infections, and its ability to attach to surfaces and other cells is important for biofilm formation and maintenance. Mutations in a gene called wspF, part of a putative chemosensory signal-transduction operon, have been shown to result in cell aggregation and altered colony morphology. The WspF phenotypes depend on the presence of WspR, which is a member of a family of signal transduction proteins known as response regulators. It is likely that the effect of the wspF mutation is to cause constitutive activation of WspR by phosphorylation. WspR contains a GGDEF domain known to catalyze formation of a cytoplasmic signaling molecule cyclic diguanylate (c-diGMP). We determined that purified WspR catalyzed the formation of c-diGMP in vitro and phosphorylation stimulated this activity. We observed increased cellular levels of c-diGMP and increased biofilm formation in a wspF mutant. Expression of a protein predicted to catalyze degradation of c-diGMP reversed the phenotypes of a wspF mutant and inhibited biofilm initiation by wild-type cells, indicating that the presence of c-diGMP is necessary for biofilm formation. A transcriptome analysis showed that expression levels of at least 560 genes were affected by a wspF deletion. The psl and pel operons, which are involved in exopolysaccharide production and biofilm formation, were expressed at high levels in a wspF mutant. Together, the data suggest that the wsp signal transduction pathway regulates biofilm formation through modulation of cyclic diguanylate levels.
Figures
Similar articles
-
Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces.Mol Microbiol. 2007 Dec;66(6):1459-73. doi: 10.1111/j.1365-2958.2007.06008.x. Epub 2007 Nov 19. Mol Microbiol. 2007. PMID: 18028314 Free PMC article.
-
Effect of PEL exopolysaccharide on the wspF mutant phenotypes in Pseudomonas aeruginosa PA14.J Microbiol Biotechnol. 2008 Jul;18(7):1227-34. J Microbiol Biotechnol. 2008. PMID: 18667850
-
Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation.Mol Microbiol. 2006 Apr;60(2):331-48. doi: 10.1111/j.1365-2958.2006.05106.x. Mol Microbiol. 2006. PMID: 16573684
-
Environmental factors that shape biofilm formation.Biosci Biotechnol Biochem. 2016;80(1):7-12. doi: 10.1080/09168451.2015.1058701. Epub 2015 Jun 23. Biosci Biotechnol Biochem. 2016. PMID: 26103134 Review.
-
Inside the complex regulation of Pseudomonas aeruginosa chaperone usher systems.Environ Microbiol. 2012 Aug;14(8):1805-16. doi: 10.1111/j.1462-2920.2011.02673.x. Epub 2011 Dec 22. Environ Microbiol. 2012. PMID: 22187957 Review.
Cited by
-
Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms.PLoS Biol. 2024 Feb 1;22(2):e3002205. doi: 10.1371/journal.pbio.3002205. eCollection 2024 Feb. PLoS Biol. 2024. PMID: 38300958 Free PMC article.
-
Binding of GTP to BifA is required for the production of Pel-dependent biofilms in Pseudomonas aeruginosa.J Bacteriol. 2024 Feb 22;206(2):e0033123. doi: 10.1128/jb.00331-23. Epub 2024 Jan 10. J Bacteriol. 2024. PMID: 38197635 Free PMC article.
-
FlhF affects the subcellular clustering of WspR through HsbR in Pseudomonas aeruginosa.Appl Environ Microbiol. 2024 Jan 24;90(1):e0154823. doi: 10.1128/aem.01548-23. Epub 2023 Dec 19. Appl Environ Microbiol. 2024. PMID: 38112425 Free PMC article.
-
Substrate Specificity of Biofilms Proximate to Historic Shipwrecks.Microorganisms. 2023 Sep 27;11(10):2416. doi: 10.3390/microorganisms11102416. Microorganisms. 2023. PMID: 37894074 Free PMC article.
-
Bacterial c-di-GMP has a key role in establishing host-microbe symbiosis.Nat Microbiol. 2023 Oct;8(10):1809-1819. doi: 10.1038/s41564-023-01468-x. Epub 2023 Aug 31. Nat Microbiol. 2023. PMID: 37653009 Free PMC article.
References
-
- Stewart, P. S. & Costerton, J. W. (2001) Lancet 358, 135-138. - PubMed
-
- Mah, T. F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S. & O'Toole, G. A. (2003) Nature 426, 306-310. - PubMed
-
- Mah, T. F. & O'Toole, G. A. (2001) Trends Microbiol. 9, 34-39. - PubMed
-
- Lyczak, J. B., Cannon, C. L. & Pier, G. B. (2000) Microbes Infect. 2, 1051-1060. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
