Focused electric field across the voltage sensor of potassium channels
- PMID: 16202706
- DOI: 10.1016/j.neuron.2005.08.020
Focused electric field across the voltage sensor of potassium channels
Abstract
Voltage-gated ion channels respond to changes in membrane potential by movement of their voltage sensors across the electric field between cytoplasmic and extracellular solutions. The principal voltage sensors in these proteins are positively charged S4 segments. The absolute magnitude of S4 movement discriminates two competing classes of gating models. In one class, the movement is <10 Angstrom due to the fact that the electric field is focused by aqueous crevices in the channel protein. In an alternative model, based in part on the crystal structure of a potassium channel, the side chains of S4 arginines move their charges across the bilayer's electric field, a distance of >25 Angstrom. Here, using tethered charges attached to an S4 segment, we provide evidence that the electric field falls across a distance of <4 Angstrom, supporting a model in which the relative movement between S4 and the electric field is very small.
Similar articles
-
Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion.Neuron. 2008 Sep 11;59(5):770-7. doi: 10.1016/j.neuron.2008.07.008. Neuron. 2008. PMID: 18786360
-
Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations.Neuron. 2005 Jul 21;47(2):183-9. doi: 10.1016/j.neuron.2005.06.012. Neuron. 2005. PMID: 16039561
-
Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel.Neuron. 2004 Jun 10;42(5):745-56. doi: 10.1016/j.neuron.2004.05.001. Neuron. 2004. PMID: 15182715
-
Structural organization of the voltage sensor in voltage-dependent potassium channels.Novartis Found Symp. 2002;245:178-90; discussion 190-2, 261-4. Novartis Found Symp. 2002. PMID: 12027007 Review.
-
Structure, function, and modification of the voltage sensor in voltage-gated ion channels.Cell Biochem Biophys. 2008;52(3):149-74. doi: 10.1007/s12013-008-9032-5. Epub 2008 Nov 7. Cell Biochem Biophys. 2008. PMID: 18989792 Review.
Cited by
-
Structural basis for gating charge movement in the voltage sensor of a sodium channel.Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93-102. doi: 10.1073/pnas.1118434109. Epub 2011 Dec 12. Proc Natl Acad Sci U S A. 2012. PMID: 22160714 Free PMC article.
-
Voltage gated ion channel function: gating, conduction, and the role of water and protons.Int J Mol Sci. 2012;13(2):1680-1709. doi: 10.3390/ijms13021680. Epub 2012 Feb 6. Int J Mol Sci. 2012. PMID: 22408417 Free PMC article. Review.
-
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.J Membr Biol. 2015 Jun;248(3):419-30. doi: 10.1007/s00232-015-9805-x. Epub 2015 May 14. J Membr Biol. 2015. PMID: 25972106 Free PMC article. Review.
-
Accessibility of four arginine residues on the S4 segment of the Bacillus halodurans sodium channel.J Membr Biol. 2007 Feb;215(2-3):169-80. doi: 10.1007/s00232-007-9016-1. Epub 2007 Jun 14. J Membr Biol. 2007. PMID: 17568977
-
Ion channel voltage sensors: structure, function, and pathophysiology.Neuron. 2010 Sep 23;67(6):915-28. doi: 10.1016/j.neuron.2010.08.021. Neuron. 2010. PMID: 20869590 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
