Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;66(1):66-71.
doi: 10.1016/j.mehy.2005.08.025. Epub 2005 Oct 4.

Passive Muscle Stiffness May Be Influenced by Active Contractility of Intramuscular Connective Tissue

Affiliations

Passive Muscle Stiffness May Be Influenced by Active Contractility of Intramuscular Connective Tissue

Robert Schleip et al. Med Hypotheses. .

Abstract

The article introduces the hypothesis that intramuscular connective tissue, in particular the fascial layer known as the perimysium, may be capable of active contraction and consequently influence passive muscle stiffness, especially in tonic muscles. Passive muscle stiffness is also referred to as passive elasticity, passive muscular compliance, passive extensibility, resting tension, or passive muscle tone. Evidence for the hypothesis is based on five indications: (1) tonic muscles contain more perimysium and are therefore stiffer than phasic muscles; (2) the specific collagen arrangement of the perimysium is designed to fit a load-bearing function; (3) morphological considerations as well as histological observations in our laboratory suggest that the perimysium is characterized by a high density of myofibroblasts, a class of fibroblasts with smooth muscle-like contractile kinetics; (4) in vitro contraction tests with fascia have demonstrated that fascia, due to the presence of myofibroblasts, is able to actively contract, and that the resulting contraction forces may be strong enough to influence musculoskeletal dynamics; (5) the pronounced increase of the perimysium in muscle immobilization and in the surgical treatment of distraction osteogenesis indicates that perimysial stiffness adapts to mechanical stimulation and hence influences passive muscle stiffness. In conclusion, the perimysium seems capable of response to mechanostimulation with a myofibroblast facilitated active tissue contraction, thereby adapting passive muscle stiffness to increased tensional demands, especially in tonic musculature. If verified, this new concept may lead to novel pharmaceutical or mechanical approaches to complement existing treatments of pathologies which are accompanied by an increase or decrease of passive muscle stiffness (e.g., muscle fibroses such as torticollis, peri-partum pelvic pain due to pelvic instability, and many others). Methods for testing this new concept are suggested, including histological examinations and specific in vitro contraction tests.

Similar articles

See all similar articles

Cited by 18 articles

See all "Cited by" articles

LinkOut - more resources

Feedback