The effective medical management of a suspected acute radiation overexposure incident necessitates recording dynamic medical data, measuring appropriate radiation bioassays, and estimating dose from dosimeters and radioactivity assessments in order to provide diagnostic information to the treating physician and a dose assessment for personnel radiation protection records. The accepted generic multiparameter and early-response approach includes measuring radioactivity and monitoring the exposed individual; observing and recording prodromal signs/symptoms and erythema; obtaining complete blood counts with white blood cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the "gold standard" dicentric assay (translocation assay for long times after exposure) for dose assessment; bioassay sampling, if appropriate, to determine radioactivity contamination; and using other available dosimetry approaches. In the event of a radiological mass-casualty incident, current national resources need to be enhanced to provide suitable dose assessment and medical triage and diagnoses. This capability should be broadly based and include stockpiling reagents and devices; establishing deployable (i.e., hematology and biodosimetry) laboratories and reference (i.e., cytogenetic biodosimetry, radiation bioassay) laboratories; networking qualified reference radioactivity-counting bioassay laboratories, cytogenetic biodosimetry, and deployable hematology laboratories with the medical responder community and national radiation protection program; and researching efforts to identify novel radiation biomarkers and develop applied biological dosimetry assays monitored with clinical, deployable, and hand-held analytical systems. These research and applied science efforts should ultimately contribute towards approved, regulated biodosimetry devices or diagnostic tests integrated into a national radioprotection program.