Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer

Proteomics. 2005 Nov;5(17):4625-36. doi: 10.1002/pmic.200401321.


Epithelial ovarian cancer is the fourth leading cause of cancer death among women. Due to the asymptomatic nature and poor survival characteristic of the disease, screening for specific biomarkers for ovarian cancer is a major health priority. Differentially expressed proteins in the serum of ovarian cancer patients have the potential to be used as cancer-specific biomarkers. In this study, proteomic methods were used to screen 24 serum samples from women with high-grade ovarian cancer and compared to a control group of 11 healthy women. Affigel-Blue treated serum samples were processed either by linear (pH 4-7) or narrow range (pH 5.5-6.7) IEF strips for the first dimension. Proteins separated in first dimension were resolved by 8-16% gradient SDS-PAGE. Protein spots were visualized by SYPRO Ruby staining, imaged by FX-imager and compared and analyzed by PDQuest software. Twenty-two protein spots were consistently differentially expressed between normal and ovarian cancer patients by resolving proteins in a linear pH strip of 4-7 for the first dimension. Six of the protein spots, significantly up-regulated in grade 3 ovarian cancer patients (p < 0.05), were identified by MALDI-TOF MS and Western blotting as the isoforms of haptoglobin precursor. When serum proteins were resolved on narrow pH range strips (5.5-6.7), 23 spots were consistently differentially expressed between normal and grade 3 ovarian cancer patients. Of these, 4 protein spots significantly down regulated in grade 3 ovarian cancer patients (p < 0.05) were identified by MALDI-TOF MS and Western blotting, as isoforms of transferrin precursor. Increased expression of serum haptoglobin and transferrin was also identified in peritoneal tumor fluid obtained from women diagnosed with grade 2/3 ovarian cancer (n = 7). Changes in the expression of haptoglobin and transferrin in the serum of women with different pathological grades of ovarian cancer was examined by one-dimensional Western blotting method. Serum samples collected from women suffering from benign, borderline, grade 1, grade 2 and grade 3 cancer (n = 4 for haptoglobin and n = 5 for transferrin in each group) were analyzed and compared to the serum of normal healthy women. The mean serum haptoglobin expression in grade 3 ovarian cancer patients was fourfold higher than in the control subjects (p < 0.05). On the other hand, transferrin expression in grade 3 ovarian cancer patients was decreased by twofold than in normal healthy women (p < 0.05). Haptoglobin expression in the serum of cancer patients (n = 7) decreased following chemotherapy (six cycles of taxol/carboplatin). Concomitant with the decrease of haptoglobin, transferrin expression remained constant in four patients, but increased in three out of seven patients included in the study. Changes in serum expression of haptoglobin correlated with the change of CA 125 levels before and after chemotherapy. In conclusion, proteomic profiling of differentially expressed proteins in the sera of normal women compared to women with ovarian cancer can greatly facilitate the discovery of a panel of biomarkers that may aid in the detection of ovarian cancer with greater specificity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Biomarkers, Tumor / blood*
  • Biomarkers, Tumor / isolation & purification
  • Blood Proteins / analysis*
  • Blood Proteins / isolation & purification
  • CA-125 Antigen / blood
  • Chromatography, Affinity
  • Electrophoresis, Gel, Two-Dimensional / methods
  • Female
  • Humans
  • Molecular Sequence Data
  • Ovarian Neoplasms / blood*
  • Ovarian Neoplasms / diagnosis
  • Peptide Fragments / chemistry
  • Protein Isoforms / blood*
  • Protein Isoforms / isolation & purification
  • Proteomics / methods*
  • Reference Values


  • Biomarkers, Tumor
  • Blood Proteins
  • CA-125 Antigen
  • Peptide Fragments
  • Protein Isoforms