Multistep and multimode cortical anchoring of tea1p at cell tips in fission yeast

EMBO J. 2005 Nov 2;24(21):3690-9. doi: 10.1038/sj.emboj.7600838. Epub 2005 Oct 13.

Abstract

The fission yeast cell-polarity regulator tea1p is targeted to cell tips by association with growing microtubule ends. Tea1p is subsequently anchored at the cell cortex at cell tips via an unknown mechanism that requires both the tea1p carboxy-terminus and the membrane protein mod5p. Here, we show that a tea1p-related protein, tea3p, binds independently to both mod5p and tea1p, and that tea1p and mod5p can also interact directly, independent of tea3p. Despite their related structures, different regions of tea1p and tea3p are required for their respective interactions with an essential central region of mod5p. We demonstrate that tea3p is required for proper cortical localization of tea1p, specifically at nongrowing cell tips, and that tea1p and mod5p are independently required for tea3p localization. Further, we find that tea3p fused to GFP or mCherry is cotransported with tea1p by microtubules to cell tips, but this occurs only in the absence of mod5p. These results suggest that independent protein-protein interactions among tea1p, tea3p and mod5p collectively contribute to tea1p anchoring at cell tips via a multistep and multimode mechanism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Polarity / physiology*
  • Fluorescent Antibody Technique
  • Gene Fusion
  • Genes, Reporter
  • Green Fluorescent Proteins / analysis
  • Green Fluorescent Proteins / genetics
  • Immunoprecipitation
  • Microscopy, Confocal
  • Microtubule-Associated Proteins / metabolism*
  • Microtubules / physiology
  • Models, Biological
  • Protein Binding
  • Protein Interaction Mapping
  • Protein Transport
  • Schizosaccharomyces / chemistry
  • Schizosaccharomyces / cytology
  • Schizosaccharomyces / physiology*
  • Schizosaccharomyces pombe Proteins / metabolism*
  • Two-Hybrid System Techniques

Substances

  • Microtubule-Associated Proteins
  • Schizosaccharomyces pombe Proteins
  • Tea1 protein, S pombe
  • Tea3 protein, S pombe
  • mod5 protein, S pombe
  • Green Fluorescent Proteins