Compared to other rat strains, the Wistar-Kyoto rats show increased amount of REM sleep, one of the characteristic sleep changes observed in depressed patients. The aims of this study were firstly to validate a simple sleep stage discriminator and then compare the effect of antidepressants on suppression of rapid eye movement (REM) sleep in Wistar-Kyoto rats and an outbred rat strain (Sprague-Dawley). Rats were implanted with telemetry transmitters with electroencephalogram/electromyogram electrodes. Following recovery, the animals were orally dosed at light onset with either desipramine (20 mg/kg), fluoxetine (10 mg/kg), citalopram (10 or 40 mg/kg) or vehicle in a cross-over design. Every 12-s epoch was automatically scored as WAKE, NREM or REM sleep. Results confirm that Wistar-Kyoto rats show increased amount of REM sleep and decreased REM latency compared with Sprague-Dawley rats. All antidepressants significantly suppressed REM sleep in Sprague-Dawley rats, but only the high dose of citalopram suppressed REM sleep in Wistar-Kyoto rats. These findings suggest that the enhanced REM activity in Wistar-Kyoto rats is less sensitive to the effect of antidepressants and therefore does not provide any additional predictive validity for assessing antidepressant efficacy.