The disruption of Daphnia magna sodium metabolism by humic substances: mechanism of action and effect of humic substance source

Physiol Biochem Zool. 2005 Nov-Dec;78(6):1005-16. doi: 10.1086/432858. Epub 2005 Sep 8.

Abstract

Humic substances have important functions in aquatic systems. While these roles are primarily indirect, influencing the physicochemical environment, recent evidence suggests these materials may also have direct biological actions. This study investigated the mechanism by which humic substances perturb sodium metabolism in a freshwater invertebrate, the water flea Daphnia magna. Aldrich humic acid (AHA) stimulated the maximal rate of whole-body sodium influx (Jmax) when experimental pH was 6 and water calcium content was 0.5 mM. This effect persisted at pH 8 and 1 mM calcium but not at pH 8 in the absence of calcium. An indirect action of AHA on apical transporter activity was proposed to explain this effect. At pH 4 AHA promoted a linear sodium uptake kinetic relationship, attributed to altered membrane permeability due to enhanced membrane binding of humic substances at low pH. In contrast, a real-world natural organic matter sample had no consistent action on sodium influx, suggesting that impacts on sodium metabolism may be limited to commercially available humic materials. These findings question the applicability of commercially available humic substances for laboratory investigations and have significant implications for the study of environmental metal toxicity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Biological Transport / drug effects
  • Calcium / analysis
  • Cell Membrane Permeability / drug effects*
  • Daphnia / drug effects
  • Daphnia / metabolism*
  • Fresh Water / chemistry
  • Humic Substances / toxicity*
  • Hydrogen-Ion Concentration
  • Sodium / metabolism*

Substances

  • Humic Substances
  • Adenosine Triphosphate
  • Sodium
  • Calcium