Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo
- PMID: 16230630
- PMCID: PMC1266150
- DOI: 10.1073/pnas.0507865102
Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo
Abstract
Lymphangiogenesis is an important process that contributes to the spread of cancer. Here we show that insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) induce lymphangiogenesis in vivo. In a mouse cornea assay, IGF-1 and IGF-2 induce lymphangiogenesis as detected with LYVE-1, a specific marker for lymphatic endothelium. Interestingly, IGF-1-induced lymphangiogenesis could not be blocked by a soluble vascular endothelial growth factor receptor 3, suggesting that the vascular endothelial growth factor receptor 3-signaling pathway is not required for IGF-induced lymphangiogenesis. In vitro, IGF-1 and IGF-2 significantly stimulated proliferation and migration of primary lymphatic endothelial cells. IGF-1 and IGF-2 induced phosphorylation of intracellular signaling components, such as Akt, Src, and extracellular signal-regulated kinase in lymphatic endothelial cells. Immunohistochemistry, RT-PCR, and Affymetrix GeneChip microarray analysis showed that the receptors for IGFs are present in lymphatic endothelium. Together, our findings suggest that IGFs might act as direct lymphangiogenic factors, although any indirect roles in the induction of lymphangiogenesis cannot be excluded. Because members of the IGF ligand and receptor families are widely expressed in various types of solid tumors, our findings suggest that these factors are likely to contribute to lymphatic metastasis.
Figures
Similar articles
-
Molecular mechanisms of lymphangiogenesis.Int J Hematol. 2004 Jul;80(1):29-34. doi: 10.1532/ijh97.04042. Int J Hematol. 2004. PMID: 15293565 Review.
-
Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3.Breast Cancer Res. 2011 Jun 21;13(3):R66. doi: 10.1186/bcr2903. Breast Cancer Res. 2011. PMID: 21693010 Free PMC article.
-
Suppression of lymphangiogenesis in human lymphatic endothelial cells by simultaneously blocking VEGF-C and VEGF-D/VEGFR-3 with norcantharidin.Int J Oncol. 2012 Nov;41(5):1762-72. doi: 10.3892/ijo.2012.1603. Epub 2012 Aug 23. Int J Oncol. 2012. PMID: 22922710
-
Targeting lymphangiogenesis to prevent tumour metastasis.Br J Cancer. 2006 May 22;94(10):1355-60. doi: 10.1038/sj.bjc.6603120. Br J Cancer. 2006. PMID: 16641900 Free PMC article. Review.
-
Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction.Kidney Int. 2013 Jan;83(1):50-62. doi: 10.1038/ki.2012.312. Epub 2012 Aug 29. Kidney Int. 2013. PMID: 22932121
Cited by
-
SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer.J Clin Invest. 2012 May;122(5):1895-906. doi: 10.1172/JCI59858. Epub 2012 Apr 2. J Clin Invest. 2012. PMID: 22466647 Free PMC article.
-
Comparative evaluation of lymphatic vessels in primary versus recurrent pterygium.Eye (Lond). 2012 Nov;26(11):1451-8. doi: 10.1038/eye.2012.194. Epub 2012 Sep 14. Eye (Lond). 2012. PMID: 22975656 Free PMC article.
-
Loss of Primary Cilia Protein IFT20 Dysregulates Lymphatic Vessel Patterning in Development and Inflammation.Front Cell Dev Biol. 2021 May 14;9:672625. doi: 10.3389/fcell.2021.672625. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34055805 Free PMC article.
-
Gene expression analyses identify a relationship between stanniocalcin 2 and the malignant behavior of colorectal cancer.Onco Targets Ther. 2018 Oct 18;11:7155-7168. doi: 10.2147/OTT.S167780. eCollection 2018. Onco Targets Ther. 2018. PMID: 30425508 Free PMC article.
-
Mesenchymal stem cells promote lymphangiogenic properties of lymphatic endothelial cells.J Cell Mol Med. 2018 Aug;22(8):3740-3750. doi: 10.1111/jcmm.13590. Epub 2018 May 11. J Cell Mol Med. 2018. PMID: 29752774 Free PMC article.
References
-
- Fidler, I. J. (2003) Nat. Rev. Cancer 3, 453–458. - PubMed
-
- Beasley, N. J., Prevo, R., Banerji, S., Leek, R. D., Moore, J., van Trappen, P., Cox, G., Harris, A. L. & Jackson, D. G. (2002) Cancer Res. 62, 1315–1320. - PubMed
-
- Dadras, S. S., Lange-Asschenfeldt, B., Velasco, P., Nguyen, L., Vora, A., Muzikansky, A., Jahnke, K., Hauschild, A., Hirakawa, S., Mihm, M. C. & Detmar, M. (2005) Mod. Pathol. 18, 1232–1242. - PubMed
-
- Alitalo, K. & Carmeliet, P. (2002) Cancer Cell 1, 219–227. - PubMed
-
- Cao, R., Bjorndahl, M. A., Religa, P., Clasper, S., Garvin, S., Galter, D., Meister, B., Ikomi, F., Tritsaris, K., Dissing, S., et al. (2004) Cancer Cell 6, 333–345. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
