FoxO-dependent and -independent mechanisms mediate SirT1 effects on IGFBP-1 gene expression

Biochem Biophys Res Commun. 2005 Dec 2;337(4):1092-6. doi: 10.1016/j.bbrc.2005.09.169. Epub 2005 Oct 5.

Abstract

Sirtuin 1 (SirT1), an NAD-dependent deacetylase that is important for promoting longevity during caloric restriction, can deacetylate and enhance the function of forkhead box transcription factors, O subfamily (FoxO). We examined the effect of SirT1 on the regulation of insulin-like growth factor-binding protein 1 (IGFBP-1), a known target of FoxO proteins that is increased in fasting. Co-transfection with a SirT1 expression vector dose-dependently stimulated IGFBP-1 promoter activity and a heterologous reporter gene construct containing three FoxO-binding sites linked to a minimal promoter. This effect is mimicked by 20muM resveratrol, a potent SirT1 activator, and immunoprecipitation and Western blotting confirm that SirT1 and FoxO1 interact in cells. Interestingly, mutation of FoxO-binding sites in the IGFBP-1 promoter reduces, but does not completely disrupt, the stimulatory effect of SirT1 on promoter activity. We found that overexpression of SirT1 is accompanied by enhanced mitogen-activated protein kinase (MAPK) activation. Treatment of SirT1-cotransfected cells with PD98059, which inhibits MAPK activation, decreased IGFBP-1 promoter activity by approximately 50%, in a FoxO-binding site-independent manner, and disrupts the residual effect of SirT1. These results indicate that SirT1 stimulates IGFBP-1 promoter activity through FoxO-dependent and -independent mechanisms, and provides the first evidence that activation of MAPK contributes to effects of SirT1 on gene expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • Cell Line
  • Forkhead Transcription Factors / classification
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism*
  • Gene Expression Regulation / genetics*
  • Humans
  • Insulin-Like Growth Factor Binding Protein 1 / genetics*
  • MAP Kinase Signaling System
  • Molecular Sequence Data
  • Promoter Regions, Genetic / genetics
  • Sirtuins / genetics
  • Sirtuins / metabolism*

Substances

  • Forkhead Transcription Factors
  • Insulin-Like Growth Factor Binding Protein 1
  • Sirtuins