Purposes: To evaluate quantitative air trapping measurements in children with mild cystic fibrosis (CF) lung disease during a 1-year, double-blind, placebo-controlled, recombinant human deoxyribonuclease (rhDNase) [dornase alfa] intervention trial and compare results from quantitative air trapping with those from spirometry or visually scored high-resolution CT (HRCT) scans of the chest.
Materials and methods: Twenty-five children with CF randomized to either daily rhDNase or placebo aerosol were evaluated at baseline, and at 3 months and 12 months by spirometer-triggered HRCT and spirometry. Outcome variables were percentage of predicted FVC, FEV1, and forced expiratory flow, midexpiratory phase (FEF(25-75%)); total and subcomponent visual HRCT scores; and quantitative air trapping measurements derived from chest HRCT images.
Results: At baseline, there were no statistical differences between groups in any of the variables used as an outcome. After 3 months of treatment, both groups had improvements in percentage of predicted FEV1 and FEF(25-75%), and total HRCT visual scores. In contrast, the rhDNase group had a 13% decrease in quantitative air trapping from baseline (severe air trapping [A3]), compared to an increase of 48% in the placebo group (p = 0.023). After 12 months, both groups had declines in percentage of predicted FVC and FEV1, but the rhDNase group retained improvements in percentage of predicted FEF(25-75%) and quantitative air trapping. The mucus plugging and total HRCT visual scores were also improved in the rhDNase group after 12 months of treatment, with and without significant differences between groups (p = 0.026 and p = 0.676). Quantitative air trapping (A3) remained improved in the rhDNase group (- 15.4%) and worsened in the placebo group (+61.3%) with nearly significant differences noted between groups (p = 0.053) after 12 months of treatment.
Conclusions: Quantitative air trapping is a more consistent sensitive outcome measure than either spirometry or total HRCT scores, and can discriminate differences in treatment effects in children with minimal CF lung disease.