Purpose: The current therapeutic approach is not so effective in breast cancer patients. Alternative treatment protocols aimed at different targets need to be explored. We recently reported a novel phosphatidylethanolamine-binding protein, human phosphatidylethanolamine-binding protein 4 (hPEBP4), as an antiapoptotic molecule. The finding led us to explore a promising approach for breast cancer therapy via silencing the expression of hPEBP4.
Experimental design: hPEBP4 expression in clinical breast specimens was examined by Tissue Microarrays. RNA interference was used to silence hPEBP4 expression in MCF-7 breast carcinoma cells and the effects on cell proliferation, cell cycle progression, apoptosis, as well as underlying mechanisms, were investigated.
Results: hPEBP4 was found to be expressed in up to 50% of breast cancers but in only <4% of normal breast tissues. Silencing of hPEBP4 potentiated tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis and cell cycle arrest in MCF-7 cells, which was due to the increased mitogen-activated protein kinase activation and the enhanced phosphatidylethanolamine externalization. Further investigation showed that silencing of hPEBP4 in MCF-7 cells promoted TNF-alpha-induced stability of p53, up-regulation of phospho-p53ser15, p21waf/cip, and Bax, and down-regulation of Bcl-2 and Bcl-xL, which were shown to depend on extracellular signal-regulated kinase 1/2 and c-jun NH2-terminal kinase activation by hPEBP4 silencing. Moreover, the increased proportion of cells in the G0-G1 phase of cell cycle was observed in hPEBP4-silenced MCF-7 cells on TNF-alpha treatment and the expression of cyclin A and cyclin E was down-regulated more significantly.
Conclusions: The antiapoptotic effect and the preferential expression pattern in breast cancer tissues make hPEBP4 a new target for breast cancer therapy. Silencing of hPEBP4 expression may be a promising approach for the treatment of breast carcinoma.