Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 280 (52), 42766-73

Adenovirus-mediated Gene Transfer of Mutated IkappaB Kinase and IkappaBalpha Reveal NF-kappaB-dependent as Well as NF-kappaB-independent Pathways of HAS1 Activation

Affiliations

Adenovirus-mediated Gene Transfer of Mutated IkappaB Kinase and IkappaBalpha Reveal NF-kappaB-dependent as Well as NF-kappaB-independent Pathways of HAS1 Activation

Karl M Stuhlmeier et al. J Biol Chem.

Abstract

It has become increasingly clear that hyaluronan is more than the simple matrix molecule it was once thought to be but instead takes part in a multitude of biological functions. Three genes encode for hyaluronan synthases (HAS). We demonstrated earlier that HAS2 and HAS3 are constitutively activated in type-B synoviocytes (fibroblast-like synoviocytes) and, furthermore, that the only gene that readily responds to stimulation with a series of proinflammatory cytokines is HAS1. Here we probe the involvement of the transcription factor NF-kappaB in induced and noninduced HAS activation. Transforming growth factor (TGF) beta1 as well as interleukin (IL)-1beta are both strong inducers of HAS1 transcription. Stimulation of fibroblast-like synoviocytes with IL-1beta resulted in rapid degradation of IkappaBalpha, an event that was preceded by IkappaBalpha phosphorylation. Interestingly, TGFbeta1 neither affected IkappaBalpha levels, nor did it cause phosphorylation of IkappaBalpha. In addition, TGFbeta1 had no effect on IkappaBbeta and IkappaBepsilon levels. Electrophorectic mobility shift assays demonstrate that IL-1beta is a potent inducer of NF-kappaB translocation; however, TGFbeta1 treatment did not result in shifting bands. Two adenovirus constructs were used to further clarify differences in TGFbeta1- and IL-1beta-induced HAS1 activation. Overexpressing IkappaBalpha completely abolished the IL-1beta effect on HAS1 but did not interfere with TGFbeta1-induced HAS1 mRNA accumulation. Identical results were obtained when a dominant negative IKK was overexpressed. Interestingly, neither overexpression of IkappaBalpha nor of IKK had any effect on HAS2 and HAS3 mRNA levels. Taken together, HAS1 can be activated by distinct pathways; IL-1beta utilizes NF-kappaB, and TGFbeta1 does not. Furthermore, HAS2 and HAS3 are activated without the involvement of NF-kappaB.

Similar articles

See all similar articles

Cited by 3 PubMed Central articles

Publication types

MeSH terms

LinkOut - more resources

Feedback