Selective attention in auditory processing as reflected by event-related brain potentials

Psychophysiology. 1992 May;29(3):247-63. doi: 10.1111/j.1469-8986.1992.tb01695.x.

Abstract

Measures of event-related brain potentials (ERPs) have revealed two kinds of selective-attention mechanisms that operate on attended and unattended auditory stimuli. The processing negativity of the ERP reveals a mechanism of intramodal selective attention in the auditory cortex controlled by the frontal cortex. This mechanism selects attended auditory stimuli for further processing when they differ from unattended stimuli in location or tonal frequency. Studies of intermodal selective attention have compared auditory ERPs during auditory and visual attention. At least in part different brain mechanisms may be involved in the selection of auditory stimuli among other auditory stimuli (intramodal selective attention) and in the selection of auditory stimuli among visual stimuli (intermodal selective attention). This is suggested by the results showing that the earlier component of the processing negativity, which is generated in the auditory cortex during intramodal selective attention, differs in scalp distribution from the early attention-related negativity elicited during intermodal selective attention. With respect to the unattended auditory stimuli, ERP studies of selective attention suggest that physical features of these stimuli are extensively processed. This is shown by the mismatch negativity component of the ERP, which is usually elicited by infrequent physical deviations in an auditory stimulus sequence both when this sequence is attended and when it is ignored. This would be impossible if the physical stimulus features were not extensively processed, even in the absence of attention.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Arousal / physiology*
  • Attention / physiology*
  • Auditory Perception / physiology*
  • Brain Mapping
  • Cerebral Cortex / physiology*
  • Dominance, Cerebral / physiology
  • Evoked Potentials, Auditory / physiology*
  • Humans
  • Reaction Time / physiology