Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 5;163(1):20-9.
doi: 10.1016/j.toxlet.2005.09.009. Epub 2005 Nov 2.

Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice

Affiliations

Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice

De-Xiang Xu et al. Toxicol Lett. .

Abstract

Maternal infection is a cause of adverse developmental outcomes. Lipopolysaccharide (LPS)-induced embryonic resorption, intra-uterine fetal death (IUFD) and preterm labor have been well characterized. In the present study, we investigated the effects of maternal LPS exposure on intra-uterine fetal growth and skeletal development. All pregnant mice except controls received an intraperitoneal injection of LPS (75 microg/kg) on gestational days (GD) 15-17. The number of live fetuses, dead fetuses and resorption sites was counted on GD 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. As expected, perinatal LPS exposure resulted in 63.2% fetal death. LPS significantly lowered fetal weight, reduced crown-rump and tail lengths, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone. Additional experiment showed that a single dose of LPS (75 microg/kg, i.p.) on GD 15 increased the expression of TNF-alpha mRNA in maternal liver and placenta and TNF-alpha concentration in maternal serum and amniotic fluid. Furthermore, pentoxifylline, an inhibitor of TNF-alpha synthesis, significantly inhibited TNF-alpha production, reduced fetal mortality, and reversed LPS-induced fetal intra-uterine growth restriction and skeletal development retardation. Taken together, these results suggest that TNF-alpha is, at least in part, involved in LPS-induced intra-uterine fetal death, intra-uterine growth restriction and skeletal development retardation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources